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1. Introduction

Stochastic differential equations is an important emerging field and has attracted great
interest from both theoretical and applied disciplines, which has been successfully
applied to problems in physics, biology, chemistry, mechanics and so on (see [6, 7, 9,
14, 21]) and the references therein). In the present literature, there are many papers on
the existence and uniqueness of solutions to stochastic differential equations (see [2, 3,
25]). The stochastic differential equations with infinite delay have become important
in recent years as mathematical models of phenomena in both physical and social
sciences [26, 28]. The existence of mild solutions and (approximate) controllability for
different types of fractional evolution systems have been reported by many researchers
(see [5, 17, 19, 25, 27, 28, 29] and the references therein).

The Sobolev type (fractional) equation appears in a variety of physical problems
such as flow of fluid through fissured rocks, thermodynamics, propagation of long
waves of small amplitude and shear in second order fluids and so on [20]. There are
many interesting results on the the existence and uniqueness of mild solutions and
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approximate controllability for a class of Sobolev type fractional evolution equations,
we refer the reader to [1, 11, 15, 18, 20].

Recently, the existence of mild solutions and the approximate controllability of
fractional Sobolev type evolution system in Banach spaces have been studied in many
publications (see [11, 12, 13, 18, 15] and the references therein).

More recently, Benchaabane and Sakthivel [4] investigated the existence and
uniqueness of mild solutions for a class of nonlinear fractional Sobolev type stochastic
differential equations in Hilbert spaces. A new set of sufficient condition is estab-
lished with the coefficients in the equations satisfying some non-Lipschitz conditions.
Revathi et al. [22] studied the local existence of mild solution for a class of stochas-
tic functional differential equations of Sobolev-type with infinite delay. The results
are extended to study the local existence results for neutral stochastic differential
equations of Sobolev-type.

For our knowledge, there is no work reported on Sobolev-type fractional impulsive
stochastic differential equation with infinite delay. Motivated by the above works,
the purpose of this paper is to prove the existence and uniqueness of mild solutions
and the controllability for the Sobolev-type fractional impulsive stochastic differential
equation with infinite delay. Our approach is based on the fixed point theorem.
The rest of this paper is organized as follows. In Section 2, we will provide some
basic definitions, lemmas and basic properties of fractional calculus. The concept of
mild solutions, a set of sufficient conditions for the existence and uniqueness of mild
solutions for the considered equations is obtained in Section 3. In Section 4, provide a
sufficient condition for the controllability for a class of fractional evolution equations
of Sobolev-type impulsive stochastic fractional equations with nonlocal conditions and
infinite delay.

2. Preliminaries and basic properties

Let H,K be two separable Hilbert spaces and L(K,H) be the space of bounded linear
operators from K into H. For convenience, we will use the same notation ‖ . ‖ to
denote the norms in H,K and L(K,H), and use (., .) to denote the inner product
of H and K without any confusion. Let (Ω,F , {Ft}t≥0,P) be a complete filtered
probability space satisfying that F0 contains all P-null sets of F . ω = (ωt)t≥0 be a
Q-Wiener process defined on (Ω,F , {Ft}t≥0,P) with the covariance operator Q such
that TrQ <∞. We assume that there exists a complete orthonormal system {ek}k≥1

in K, a bounded sequence of nonnegative real numbers λk such that Qek = λkek,
k = 1, 2, · · ·, and a sequence of independent Brownian motions {βk}k≥1 such that

(ω(t), e)K =

∞∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ≥ 0 .

Let L0
2 = L2(Q 1

2K,H) be the space of all HilbertSchmidt operators from Q 1
2K to H

with the inner product < ϕ,ψ >L 0
2

= Tr[ϕQψ∗].
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In this paper, we consider the following Sobolev-type fractional impulsive stochas-
tic differential equations with infinite delay:

Dα
t Lx(t) = Ax(t) + f(t, xt)) + σ(t, xt)

dω(t)

dt
, t ∈ J = [0, T ], T > 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), k = 1, · · · ,m,
x(t) = φ, φ ∈ Bh,

(2.1)
where Dα

t is the Caputo fractional derivative of order α, 1
2 < α < 1, x(.) takes the

value in a separable Hilbert space H. We assume that the operators L and A are
defined as: A : D(A) ∈ H → H and L : D(L) ∈ H → H generates a strongly
continuous semigroup S(t)t≥0. Here 0 = t0 ≤ t1 ≤ · · · ≤ tm ≤ tm+1 = T , ∆x(tk) =
Ik(x(t−k )) = x(t+k ) − x(t−k ), x(t+k ) = limh→0 x(tk + h) and x(t−k ) = limh→0 x(tk − h)
represent the right and left limits of x(t) at t = tk respectively. The initial data
φ = {φ(t); t ∈ (−∞, 0]} is an F0-measurable, Bh-valued random variable independent
of ω with finite second moments. Further f : J ×Bh → H and σ : J ×Bh → L0

2(K,H)
are appropriate mappings will be specified later.

We introduce the following assumptions on the operators L and A.

L1 L and A are closed linear operators,

L2 D(L) ⊂ D(A) and L is bijective,

L3 L−1 : H → D(L) is compact.

Remark 2.1. From (L3), we deduce that L−1 is a bounded operators, for short, we
denote by C1 = ‖L−1‖ and C2 = ‖L‖. Note (L3) also implies that L is closed since
the fact: L−1 is closed and injective, then its inverse is also closed. It comes from
(L1) − (L3) and the closed graph theorem, we obtain the boundedness of the linear
operator AL−1 : H → H. Consequently, −AL−1 generates a strongly continuous
semigroup {S(t)}t≥0 in H. We suppose that M := maxt∈[0,T ] ‖S(t)‖.

Now, we present the abstract space phase Bh. Assume that h : (−∞, 0] → (0,+∞)

with l =
∫ 0

−∞ h(t)dt <∞ a continuous function. We define the abstract phase space
Bh by

Bh :=

{
φ : (−∞, 0]× Ω→ H, for any a > 0, (E | φ(θ |2)

1
2

is bounded and measurable function on [−a, 0] and∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖φ(θ‖2)

1
2 < +∞

}
.

If Bh is endowed with the norm

‖φ‖Bh :=

∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖φ(θ)‖2)

1
2 , φ ∈ Bh,
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then (Bh, ‖.‖Bh) is a Banach space [23, 24].
Now we consider the space

BT :=

{
x : (−∞, T ]× Ω→ H, such that x|Jk ∈ C(Jk,H)

and there exist x(t+k ), and x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, . . . ,m

and sup
0≤s≤T

(E‖x(s)‖2) <∞

}
,

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, . . . ,m. We endow a
seminorm ‖.‖BT on BT , it is defined by

‖x‖BT = ‖φ‖Bh + sup
0≤s≤T

(E‖x(s)‖2)
1
2 , x ∈ BT .

We recall the following lemma:

Lemma 2.2. [24] Assume that x ∈ BT ; then for t ∈ J, xt ∈ Bh. Moreover

l(E‖x(t)‖2)
1
2 ≤ l sup

s∈[0,t]

E‖x(s)‖2)
1
2 + ‖x0‖Bh ,

where l =
∫ 0

−∞ h(s)ds <∞.

Definition 2.3. [8] The Caputo derivative of order α for a function f : [0,∞)→ R,
which is at least n-times differentiable can be defined as

Dα
a f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds = I(n−α)
a

(
dnf

dtn

)
(t) (2.2)

for n− 1 ≤ α < n, n ∈ N. If 0 < α ≤ 1, then

Dα
a f(t) =

1

Γ(1− α)

∫ t

a

(t− s)−α
(
df(s)

ds

)
ds . (2.3)

Obviously, the Caputo derivative of a constant is equal to zero.

Definition 2.4. The fractional integral of order α with the lower limit 0 for a function
f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(s− t)α−1f(s)ds (2.4)

provided the right-hand side is pointwise defined on [0,∞), where the Γ is the gamma
function.

Remark 2.5. If f is an abstract function with values in H, then integrals which
appear in Definition 2.4 are taken in Bochners sense.
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For x ∈ H, we define two families {TL(t), t ≥ 0} and {SL(t), t ≥ 0} of operators
by

TL(t) := Tα(t)L−1 =
∫∞

0
L−1Ψα(θ)S(tαθ)dθ,

SL(t) := Sα(t)L−1 = α
∫∞

0
L−1θΨα(θ)S(tαθ)dθ,

(2.5)

where

Ψα(θ) :=
1

πα

∞∑
n=1

(−θ)n−1 Γ(nα+ 1)

n!
sin(nπα), θ ∈]0,+∞[ (2.6)

is a probability density function defined on ]0,∞[, which satisfies that Ψα(θ) ≥ 0 and∫∞
0

Ψα(θ)dθ = 1.

Lemma 2.6. [30] The operators Tα and Sα have the following properties:

1. For any fixed x ∈ H, ‖Tα(t)x‖ ≤M‖x‖, ‖Sα(t)x‖ ≤ M

Γ(α)
‖x‖.

2. {Tα(t), t ≥ 0} and {Sα(t), t ≥ 0} are strongly continuous.

Lemma 2.7. [13] The operators TL and SL defined by (2.5) have the following prop-
erties:

1. For any fixed t ≥ 0, TL(t) and SL(t) are linear and bounded operators, and for
any x ∈ H

‖TL(t)x‖ ≤MC1‖x‖,

‖SL(t)x‖ ≤ MC1

Γ(α)
‖x‖. (2.7)

2. {TL(t), t ≥ 0} and {SL(t), t ≥ 0} are compact.

The key tool in our approach is the following form of the Krasnoselskii’s fixed
point theorem [10].

Theorem 2.8. Let B be a nonempty closed convex of a Banach space (X, ‖.‖). Sup-
pose that P and Q map B into X such that

(i) Px+Qy ∈ B whenever x, y ∈ B;

(ii) P is compact and continuous;

(iii) Q is a contraction mapping.

Then there exists z ∈ B such that z = Pz +Qz.
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3. Existence of mild solutions

In this section, we first establish the existence of mild solutions to Sobolev-type frac-
tional stochastic differential equations (2.1). More precisely, we will formulate and
prove sufficient conditions for the existence of solutions to (2.1) with infinite delay
and impulses. First, we first define the concept of mild solution to our problem.

Definition 3.1. A cádlàg H-valued process x is said to be a mild solution of (2.1) if

1. x(t) is Ft-adapted and {x(t), t ∈ [0, T ]} is Bh-valued,

2. for each t ∈ J , x(t) satisfies the following integral equation:

x(t) = TL(t)Lφ(0) +

∫ t

0

(t− s)α−1SL(t− s)f(s, xs)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, xs)dω(t)

+
∑

0<tk<t

TL(t− tk)Ik(x(t−k )),

(3.1)

3. x(t) = φ(t) on (−∞, 0] satisfying ‖φ‖2Bh <∞.

Let us introduce the following hypotheses:

(H1) There exists Lf > 0 such that

E‖f(t, x)− f(t, y)‖2H ≤ Lf‖x− y‖2Bh , t ≥ 0.

(H2) There exists Lσ > 0 such that

E‖σ(t, x)− σ(t, y)‖2L 0
2
≤ Lσ‖x− y‖2Bh , t ≥ 0.

(H3) For all x ∈ H, there exist constants Lk > 0, k = 1, . . . ,m, . . . for each

|Ik(y)|2 ≤ Lk .

Theorem 3.2. Assume that f(t, 0) = σ(t, 0) = 0, ∀t ≥ 0. Assume that hypotheses
(H1)− (H3) hold. If

r ≥ 3M2C2
1

m∑
k=1

Lk +
3M2C2

1T
2αχ

Γ2(α)

[
Lf
α2

+
Lσ

T (2α− 1)

]
(3.2)

and
2M2C2

1

Γ2(α)
T 2α

[
Lf l

α2
+

Lσl

T (2α− 1)

]
< 1, (3.3)

then system (2.1) has a mild solution on (−∞, T ].
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Proof. Transform the problem (2.1) into a fixed-point problem. Consider the operator
Ψ : BT → BT defined by

Ψx(t) =



φ(t), if t ∈ (−∞, 0],

TL(t)Lφ(0) +

∫ t

0

(t− s)α−1SL(t− s)f(s, xs)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, xs)dW (t)

+
∑

0<tk<t

TL(t− tk)Ik(x(t−k )).

For φ ∈ Bh, we define φ̂ by

φ̂(t) =

{
φ(t), t ∈ (−∞, 0],

TL(t)Lφ(0), t ∈ [0,+∞[;
then φ̂ ∈ BT .

Let x(t) = y(t) + φ̂(t),−∞ < t < T .
It is evident that y satisfies that y0 = 0, t ∈ (−∞, 0] and

y(t) =

∫ t

0

(t− s)α−1SL(t− s)f(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, ys + φ̂s)dω(t)

+
∑

0<tk<t

Tα(t− tk)Ik(y(t−k ) + φ̂(t−k )), t ∈ J

if and only if x satisfies that x(t) = φ(t), t ∈ (−∞, 0], and

x(t) = TL(t)Lφ(0) +

∫ t

0

(t− s)α−1SL(t− s)f(s, xs)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, xs)dω(t)

+
∑

0<tk<t
Tα(t− tk)Ik(x(t−k )), t ∈ J .

Set B0
T = {z ∈ BT , such that z0 = 0} and for any z ∈ B0

T we have

‖z‖B0
T

= ‖z0‖Bh + sup
t∈J

(E‖z(t)‖2)
1
2 = sup

t∈J
(E‖z(t)‖2)

1
2 ,

where ‖z0‖Bh = 0. Thus (B0
T , ‖.‖B0

T
) is a Banach space.

Let the operator Ψ̂ : B0
T −→ B0

T be defined by

Ψ̂y(t) =



0 , t ∈ (−∞, 0]∫ t

0

(t− s)α−1SL(t− s)f(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, ys + φ̂s)dω(t)

+
∑

0<tk<t

TL(t− tk)Ik(y(t−k ) + φ̂(t−k )), t ∈ J.
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Set Br =
{
y ∈ B0

T , ‖y‖2BT ≤ r, r > 0
}

. The set Br is clearly a bounded closed
convex set in B0

T for each r > 0 and y ∈ Br, by Lemma 2.2 we have

‖yt + φ̂t‖2Bh ≤ 2(‖yt‖2Bh + ‖φ̂t‖2Bh)
≤ 4(l2 sups∈[0,t]E‖y(s)‖2H + ‖y0‖2Bh)

+4(l2 sups∈[0,t]E‖φ̂(s)‖2H + ‖φ̂0‖2Bh)

≤ 4‖φ‖2Bh + 4l2(r +M2C2
1C

2
2E‖φ(0)‖2H) = χ .

Now, let the two operators Ψ̂1 and Ψ̂2 be defined as

Ψ̂1y(t) =


0, t ∈ (−∞, 0],∑
0<tk<t

TL(t− tk)Ik(y(t−k ) + φ̂(t−k )), t ∈ [0, T ], (3.4)

and

(Ψ̂2y)(t) =


0, t ∈ (−∞, 0],∫ t

0

(t− s)α−1SL(t− s)f(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, ys + φ̂s)dω(t), t ∈ [0, T ].

(3.5)

It is clear that

Ψ̂1 + Ψ̂2 = Ψ .

Then, the problem of finding a solution of (2.1) is reduced to finding a solution

of the operator equation y(t) = Ψ̂1(y)(t) + Ψ̂2(y)(t), t ∈ (−∞, T ]. In order to

use Theorem 2.8, we will verify that Ψ̂1 is compact and continuous while Ψ̂2 is a
contraction operator.

For the sake of convenience, we divide the proof into several steps.

Step 1. We show that Ψ̂1y + Ψ̂2y
∗ ∈ Br, for y, y∗ ∈ Br. For t ∈ [0, T ], we have
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‖(Ψ̂1y)(t) + (Ψ̂2y
∗)(t)‖2H ≤ 3

∑
0<tk<t

∥∥∥TL(t− tk)‖2E‖Ik(y(t−k ) + φ̂(t−k ))
∥∥∥2

H

+ 3E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)f(s, y∗s + φ̂s)ds

∥∥∥∥2

H

+ 3E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)σ(s, y∗s + φ̂s)dW (t)

∥∥∥∥2

H

≤3M2C2
1

m∑
k=1

Lk

+ 3

∫ t

0

‖(t− s)α−1SL(t− s)‖2E‖f(s, y∗s + φ̂s)‖2Hds

+ 3

∫ t

0

‖(t− s)α−1Sα(t− s)‖2E‖σ(s, y∗s + φ̂s)‖2Hds

≤3M2C2
1

Γ2(α)

Tα

α∫ t

0

(t− s)α−1 ds+
2M2C2

1Lσχ

Γ2(α)

∫ t

0

(t− s)2(α−1)ds

≤3M2C2
1

m∑
k=1

Lk +
3M2C2

1Lfχ

Γ2(α)

T 2α

α2
+

2M2C2
1Lσχ

Γ2(α)

T 2α−1

2α− 1

=3M2C2
1

m∑
k=1

Lk +
3M2C2

1T
2αχ

Γ2(α)

[
Lf
α2

+
Lσ

T (2α− 1)

]
.

Then

‖(Ψ̂1y)(t) + (Ψ̂2y
∗)(t)‖2H ≤ 3M2C2

1

∑m
k=1 Lk +

3M2C2
1T

2αχ
Γ2(α)

[
Lf
α2 + Lσ

T (2α−1)

]
≤ r .

Hence, we get Ψ̂1y + Ψ̂2y
∗ ∈ Br.

Step 2. The map Ψ̂1 is continuous on Br .

Let {yn}∞n=1 be a sequence in Br with lim yn → y ∈ Br. Then for t ∈ J we have

E‖(Ψ̂1y
n)(t)− (Ψ̂1y)(t)‖2H ≤∑

0<tk<t

‖Tα(t− tk)‖2E‖Ik(yn(t−k ) + φ̂(t−k ))− Ik(y(t−k ) + φ̂(t−k ))‖2H .

Since the functions Ii, i = 1, 2, . . . ,m are continuous hence limn→∞ ‖(Ψ̂1y
n)(t)−

(Ψ̂1y)(t)‖2H = 0 which implies that the mapping Ψ̂1 is continuous on Br.
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Step 3. Ψ̂1 maps bounded sets into bounded sets in Br.

Let us prove that for r > 0 there exists a r̂ > 0 such that for each y ∈ Br we
have E‖(Ψ̂1y)(t)‖2H < r̂ for t ∈ J .

E‖(Ψ̂1y)(t)‖2H ≤
∑

0<tk<t

‖TL(t− tk)‖2E‖Ik(y(t−k ) + φ̂(t−k ))‖2H

≤M2C2
1

∑m
0 Lk = r̂ ,

which proves the desired result.

Step 4. The map Ψ̂1 is equicontinuous.

Let u, v ∈ J , 0 ≤ u < v ≤ T , y ∈ Br, we obtain

E‖(Ψ̂1y)(v)− (Ψ̂1y)(u)‖2H ≤ C2
1

∑
0<tk<u

Lk‖Tα(v − tk)− Tα(u− tk)‖2.

The right-hand side tends to zero as v−u −→ 0, since Tα is strongly continuous
and it allows us to conclude that

lim
u→v
‖Tα(v − tk)− Tα(u− tk)‖2 = 0,

which implies that Ψ̂1(Br) is equicontinuous.

Finally, combining Step 1 to Step 4 together with Ascoli’s theorem, we conclude
that the operator Ψ̂1 is compact.

Step 5. Ψ̂2 is a contraction mapping.

Let y, y∗ ∈ Br and t ∈ J we have

E‖(Ψ̂2y)(t)−(Ψ̂2y
∗)(t)‖2H

≤2E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)
[
f(s, ys + φ̂s)− f(s, y∗s + φ̂s)

]
ds

∥∥∥∥2

H

+ 2E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)
[
σ(s, ys + φ̂s)− σ(s, y∗s + φ̂s)

]
dω(s)

∥∥∥∥2

H

≤2

∫ t

0

‖(t− s)α−1SL(t− s)‖ds
∫ t

0

‖(t− s)α−1SL(t− s)‖

× E‖f(s, ys + φ̂s)− f(s, y∗s + φ̂s)‖2Hds

+ 2

∫ t

0

‖(t− s)α−1SL(t− s)‖2E‖σ(s, ys + φ̂s)− σ(s, y∗s + φ̂s)‖2Hds
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≤2
M2C2

1

Γ2(α)

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1Lf‖y(s)− y∗(s)‖2Bhds

+
2M2C2

1

Γ2(α)

∫ t

0

(t− s)2(α−1)Lσ‖ys − y∗s‖2Bhds

≤2M2C2
1

Γ2(α)
T 2α

[
Lf l

α2
+

Lσl

T (2α− 1)

]
‖y − y∗‖2B0

T
.

By the condition (3.3), we obtain that Ψ̂2 is a contraction mapping. Hence, by
Krasnoselskii’s fixed point theorem we can conclude that the problem (2.1) has at
least one solution on (−∞, T ]. This completes the proof of the theorem.

Example 3.3. In this section, we consider an example to illustrate our main theorem.
We examine the existence of solutions for the following fractional stochastic partial
differential equation of the form

Dα
t [z(t, x)− zxx(t, x)] = zxx(t, x) + F (t, z(t−R, x))

+G(t, z(t−R, x))
dω(t)

dt
, x ∈= [0, π], R > 0, t 6= tk,

Ik(z(t−k , x)) = z(t+k , x)− z(t−k , x), k = 1, . . . , n,
z(t, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π],
z(t, 0) = 0 = z(t, π), t ≥ 0,

(3.6)

where ω(t) is a standard cylindrical Wiener process in H defined on a stochastic
space (Ω,F ,P, {Ft}); Dα

t is the Caputo fractional derivative of order 0 < α < 1;
0 < t1 < t2 < · · · < tn < T are prefixed numbers.

Let K = H = L2([0, π]) with the norm ‖ · ‖. Define the operators A : D(A) ⊂
H −→ H, L : D(L) ⊂ H −→ H, by Az = −z′′ and Lz = z − z

′′
, where each

domain D(A) and D(L) is given by {z ∈ H, z, z′ are absolutely continuous, z
′′ ∈

H and z(0) = z(π) = 0}.

Further, A and L can be Az =

∞∑
n=1

n2(z, zn)zn, z ∈ D(A), Lz =

∞∑
n=1

(1 + n2)(z, zn)zn,

z ∈ D(L), where zn(x) =
√

2
π sin(nx), n = 1, 2, . . . , is the orthogonal set of vectors

of A. Also, for z ∈ H L−1z =

∞∑
n=1

1

(1 + n2)
(z, zn)zn, AL−1z =

∞∑
n=1

n

(1 + n2)
(z, zn)zn,

T (t)z =

∞∑
n=1

exp
n2t

(1 + n2)
(z, zn)zn.

It is easy to see that −AL−1 generates a uniformly continuous semigroup T (t), t ≥ 0
and so maxt∈[0,T ] ‖T (t)‖ is finite.
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Let h(t) = e2t, t < 0, then l =
∫ 0

−∞
h(s)
s ds = 1

2 and define

‖φ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(E|θ|2)

1
2 ds .

Hence for (t, φ) ∈ [0, T ] × Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π].
But z(t) = z(t, ·), that is z(t)(x) = z(t, x). Define f : [0, T ] × Bh −→ L2([0, π]) and
σ : [0, T ]× Bh −→ L0

2 as follows:

f(t, φ)x = F (t, x(·)),
σ(t, φ)x = G(t, x(·)).

With the choice of A, f and σ can be rewritten as the abstract form of system (2.1).
Under the appropriate conditions on the functions f , σ and Ik as those in (H1)-(H3),
system (3.6) has a mild solution on (−∞, T ].

4. Controllability results

In this section, we treat the controllability of Sobolev-type impulsive stochastic frac-
tional equations with nonlocal conditions using the argument of the previous section.
More precisely we will consider the following problem:


Dα
t Lx(t) = Ax(t) +Bu(t) + f(t, xt)) + σ(t, xt)

dω(t)

dt
, t ∈ J = [0, T ], T > 0, t 6= tk

∆x(tk) = Ik(x(t−k )), k = 1, . . . ,m
x(0) + g(x) = x0 = φ, φ ∈ Bh ,

(4.1)
where A,L, f, σ and Ik are as in Section 3, the nonlocal function g : Bh −→ H.
The control function u(·) is given in L2(J, ‘U) a Banach space of admissible control
functions for a separable Hilbert space U . Finally B is a bounded linear operator
from U to H.

Definition 4.1. An Ft-adapted stochastic process x : (−∞, T ] −→ H is said to be a
mild solution of (4.1) if x0 = φ(t) on (−∞, 0]:

1. x(t) is Bh-valued and the restriction of x(·) to (tk, tk+1], k = 1, 2, . . . ,m is
continuous.

2. for each t ∈ J , x(t) satisfies the following integral equation:

x(t) = TL(t)L(φ(0)− g(x)) +

∫ t

0

(t− s)α−1SL(t− s)Bu(s)ds

+

∫ t

0

(t− s)α−1SL(t− s)f(s, xs)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, xs)dω(t)

+
∑

0<tk<t
TL(t− tk)Ik(x(t−k )),

(4.2)
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P - a.s for all t ∈ J.

Definition 4.2. The system (4.1) is said to be controllable on the interval (−∞, T ]
if for every initial value φ and every x1 ∈ H, there exists a control u ∈ L2(J,U), such
that the mild solution x(t) of system (4.1) satisfies y(T ) = x1.

Our main result in this section is the following.
We shall assume some additional hypotheses:

(H4) The linear operator W from L2(J,U) into H defined by

Wu =

∫ T

0

(T − s)α−1SL(T − s)Bu(s)ds

has an induced inverse W−1 which takes values in L2(J,U) kerW , and there
exist positive constants M1, M2 such that ‖B‖2 = M1, ‖W−1‖2 = M2.

(H5) There exists Lg > 0 such that

E‖g(x)− g(y)‖2H ≤ Lg‖x− y‖2Bh , t ≥ 0.

Theorem 4.3. Assume that f(t, 0) = σ(t, 0) = g(0) = 0, ∀t ≥ 0. Assume that
hypotheses (H1)− (H3) and (H4)− (H5) hold. If

r∗ ≥ 5M2C2
1 (

m∑
k=1

Lk+C2
2Lgχ

∗)+
5M2C2

1T
2α

Γ2(α)

[
χ∗Lf
α2

+
χ∗Lσ

T (2α− 1)
+

ξM1

T (2α− 1)

]
(4.3)

and

Λ = 4M2C2
1C

2
2Lgl + 4

M2C2
1

Γ2(α)
T 2α

[
Lf l

α2

(
1 +

3M1M2M
2C2

1T
2α

α2Γ2(α)

)
+

Lσl

T (2α− 1)

(
1 +

3M1M2M
2C2

1T
2α

T (2α− 1)α2Γ2(α)

)]
< 1 , (4.4)

then the system (4.1) is controllable on (−∞, T ].

Proof. Using assumption (H4), for an arbitrary process x(·), define the control process

ux(t) =W−1

{
x1 − TL(t)L(φ(0)− g(x))−

∫ t

0

(t− s)α−1SL(t− s)f(s, xs)ds

−
∫ t

0

(t− s)α−1SL(t− s)σ(s, xs)dω(t)

−
∑

0<tk<t

TL(t− tk)Ik(x(t−k ))

}
(t). (4.5)

It shall now be shown that when using this control, the operator Ψ∗ defined by
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Ψ∗x(t) =



φ(t), if t ∈ (−∞, 0]

TL(t)L(φ(0)− g(x)) +

∫ t

0

(t− s)α−1SL(t− s)Bu(s)ds

+

∫ t

0

(t− s)α−1SL(t− s)f(s, xs)ds+

∫ t

0

(t− s)α−1SL(t− s)σ(s, xs)dω(t)

+
∑

0<tk<t
TL(t− tk)Ik(x(t−k )) for all t ∈ J,

from BT into itself for each y ∈ BT has a fixed point. This fixed point is then a
solution of equation (4.1).

For φ ∈ Bh, we define φ̂ by

φ̂(t) =

{
φ(t), t ∈ (−∞, 0],

TL(t)Lφ(0), t ∈ [0,+∞[;
then φ̂ ∈ BT .

Let x(t) = y(t) + φ̂(t),−∞ < t < T .
It is evident that y satisfies y0 = 0, t ∈ (−∞, 0], and

y(t) =− TL(t)Lg(y + φ̂) +

∫ t

0

(t− s)α−1SL(t− s)Buy+φ̂(s)ds

+

∫ t

0

(t− s)α−1SL(t− s)f(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, ys + φ̂s)dω(t)

+
∑

0<tk<t

Tα(t− tk)Ik(y(t−k ) + φ̂(t−k )), t ∈ J,

where uy+φ̂ is obtained from (4.5) by replacing xt by yt + φ̂t.

Set B0
T = {z ∈ BT , such that z0 = 0} and for any z ∈ B0

T we have

‖z‖B0
T

= ‖z0‖Bh + sup
t∈J

(E‖z(t)‖2)
1
2 = sup

t∈J
(E‖z(t)‖2)

1
2 ,

where ‖z0‖Bh = 0. Thus (B0
T , ‖.‖B0

T
) is a Banach space.

Let the operator Ψ̂∗ : B0
T −→ B0

T be defined by

Ψ̂∗y(t) =



0, t ∈ (−∞, 0]

−TL(t)Lg(y + φ̂) +

∫ t

0

(t− s)α−1SL(t− s)Buy+φ̂(s)ds

+

∫ t

0

(t− s)α−1SL(t− s)f(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, ys + φ̂s)dω(t)

+
∑

0<tk<t
TL(t− tk)Ik(y(t−k ) + φ̂(t−k )), t ∈ J.
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Set Br∗ =
{
y ∈ B0

T , ‖y‖2B0
T
≤ r∗, r∗ > 0

}
. The set Br∗ is clearly a bounded

closed convex set in B0
T for each r∗ > 0 and for each y ∈ Br∗ . By Lemma 2.2 we

have

‖yt + φ̂t‖2Bh ≤ 2(‖yt‖2Bh + ‖φ̂t‖2Bh)

≤ 4(l2 sups∈[0,t]E‖y(s)‖2H + ‖y0‖2Bh)

+4(l2 sups∈[0,t]E‖φ̂(s)‖2H + ‖φ̂0‖2Bh)

≤ 4‖φ‖2Bh + 4l2(r∗ +M2C2
1C

2
2E‖φ(0)‖2H) = χ∗ .

Now, let the two operators Ψ̂∗1 and Ψ̂∗2 defined as

Ψ̂∗1y(t) =


0 t ∈ (−∞, 0]∑
0<tk<t

TL(t− tk)Ik(y(t−k ) + φ̂(t−k )), t ∈ [0, T ] (4.6)

and

(Ψ̂∗2y)(t) =



0 t ∈ (−∞, 0]

−TL(t)Lg(y + φ̂) +

∫ t

0

(t− s)α−1SL(t− s)Buy+φ̂(s)ds

+

∫ t

0

(t− s)α−1SL(t− s)f(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1SL(t− s)σ(s, ys + φ̂s)dW (t) t ∈ [0, T ] .

(4.7)

It is clear that

Ψ̂∗1 + Ψ̂∗2 = Ψ∗ .

Then, the problem of finding a solution of (4.1) is reduced to finding a solution

of the operator equation y(t) = Ψ̂∗1(y)(t) + Ψ̂∗2(y)(t), t ∈ (−∞, T ]. In order to

use Theorem 2.8 we will verify that Ψ̂∗1 is compact and continuous while Ψ̂∗2 is a
contraction operator.

For the sake of convenience, we divide the proof into several steps.
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Step 1. We show that Ψ̂∗1y + Ψ̂∗2y
∗ ∈ Br∗ , for y, y∗ ∈ Br∗ . For t ∈ [0, T ], we have

‖(Ψ̂1y)(t) + (Ψ̂2y
∗)(t)‖2H ≤ 5

∑
0<tk<t

∥∥∥TL(t− tk)‖2E‖Ik(y(t−k ) + φ̂(t−k ))
∥∥∥2

H

+ 5‖TL(t)L‖2E‖g(y + φ̂)‖2H

+ 5E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)f(s, y∗s + φ̂s)ds

∥∥∥∥2

H

+ 5E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)σ(s, y∗s + φ̂s)dω(t)

∥∥∥∥2

H

+ 5

∫ t

0

(t− s)α−1SL(t− s)Buy∗+φ̂(s)ds .

Observe that

E‖uy∗+φ̂‖
2 ≤ 6M2

{
E|x1|2H +M2C2

1C
2
2E|φ(0)|2H +M2C2

1C
2
2Lgχ

∗ +M2C2
1

m∑
k=1

Lk

+
M2C2

1T
2αχ∗

Γ2(α)

[
Lf
α2

+
Lσ

T (2α− 1)

]}
= ξ .

Then

‖(Ψ̂1y)(t) + (Ψ̂2y
∗)(t)‖2H ≤ 5M2C2

1

m∑
k=1

Lk + 5‖TL(t)L‖2E‖g(y∗ + φ̂)‖2H

+ 5

∫ t

0

‖(t− s)α−1SL(t− s)‖2E‖f(s, y∗s + φ̂s)‖2Hds

+ 5

∫ t

0

‖(t− s)α−1Sα(t− s)‖2E‖σ(s, y∗s + φ̂s)‖2Hds

+ 5

∫ t

0

(t− η)α−1SL(t− η)Buy∗+φ̂(η)dη

≤ 5M2C2
1

m∑
k=1

Lk + 5M2C2
1C

2
2Lgχ

∗

+
5M2C2

1Lfχ
∗

Γ2(α)

Tα

α

∫ t

0

(t− s)α−1 ds

+
5M2C2

1Lσχ
∗

Γ2(α)

∫ t

0

(t− s)2(α−1)ds

+
5M2C2

1M1ξ

Γ2(α)

∫ t

0

(t− η)2(α−1)dη
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≤ 5M2C2
1 (

m∑
k=1

Lk + C2
2Lgχ

∗)

+
5M2C2

1Lfχ
∗

Γ2(α)

T 2α

α2
+

5M2C2
1Lσχ

∗

Γ2(α)

T 2α−1

2α− 1

+
5M2C2

1M1ξ

Γ2(α)

T 2α−1

2α− 1

= 5M2C2
1 (

m∑
k=1

Lk + C2
2Lgχ

∗)

+
5M2C2

1T
2α

Γ2(α)

[
χ∗Lf
α2

+
χ∗Lσ

T (2α− 1)
+

ξM1

T (2α− 1)

]
.

Then

‖(Ψ1y)(t) + (Ψ2y
∗)(t)‖2H ≤ 5M2C2

1 (

m∑
k=1

Lk + C2
2Lgχ

∗)

+
5M2C2

1T
2α

Γ2(α)

[
χ∗Lf
α2

+
χ∗Lσ

T (2α− 1)
+

ξM1

T (2α− 1)

]
≤ r∗.

Hence, we get Ψ̂∗1y + Ψ̂∗2y
∗ ∈ B∗r .

Step 2. As in Section 3, we can prove that the operators Ψ̂∗1 is compact and contin-
uous.

Step 3. Ψ̂∗2 is a contraction mapping.

Let y ,y∗ ∈ Br∗ and t ∈ J we have

‖(Ψ̂∗2y)(t)− (Ψ̂∗2y
∗)(t)‖2H ≤ 4E

∥∥∥TL(t)L
[
g(y + φ̂)− g(y∗ + φ̂)

]∥∥∥2

H

+ 4E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)
[
f(s, ys + φ̂s)− f(s, y∗s + φ̂s)

]
ds

∥∥∥∥2

H

+ 4E

∥∥∥∥∫ t

0

(t− s)α−1SL(t− s)
[
σ(s, ys + φ̂s)− σ(s, y∗s + φ̂s)

]
dω(s)

∥∥∥∥2

H

+ 4E

∥∥∥∥∫ t

0

(t− η)α−1SL(t− η)B(uy+φ̂ − uy∗+φ̂)dη

∥∥∥∥2

H
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≤ 4M2C2
1C

2
2E‖g(y + φ̂)− g(y∗ + φ̂)‖2H

+ 4

∫ t

0

‖(t− s)α−1SL(t− s)‖ds
∫ t

0

‖(t− s)α−1SL(t− s)‖

× E‖f(s, ys + φ̂s)− f(s, y∗s + φ̂s)‖2Hds

+ 4

∫ t

0

‖(t− s)α−1SL(t− s)‖2E‖σ(s, ys + φ̂s)− σ(s, y∗s + φ̂s)‖2L0
2
ds

+ 12M1M2

∫ t

0

‖(t− η)α−1SL(T − η)‖dη
∫ t

0

‖(t− η)α−1SL(T − η)‖

×
[∫ t

0

‖(t− s)α−1SL(t− s)‖ds
∫ t

0

‖(t− s)α−1SL(t− s)‖

×E‖f(s, ys + φ̂s)− f(s, y∗s + φ̂s)‖2Hds
]
dη

+ 12M1M2

∫ t

0

‖(t− η)α−1SL(T − η)‖2
[∫ t

0

‖(t− s)α−1SL(t− s)‖2

× E‖σ(s, ys + φ̂s)− σ(s, y∗s + φ̂s)‖2Hds
]
dη

+ 12M1M2M
2C2

1C
2
2E‖g(y + φ̂)− g(y∗ + φ̂)‖2H

≤ 4M2C2
1C

2
2Lg‖y − y∗‖2Bh

+
4M2C2

1

Γ2(α)

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1Lf‖ys − y∗s‖2Bhds

+
4M2C2

1

Γ2(α)

∫ t

0

(t− s)2(α−1)Lσ‖ys − y∗s‖2Bhds

+
12M1M2M

4C4
1

Γ4(α)

∫ t

0

(t− η)α−1dη

∫ t

0

(t− η)α−1

×
[∫ t

0

(t− s)(α−1)ds

∫ t

0

(t− s)(α−1)Lf‖ys − y∗s‖2Bhds
]
dη

+
12M1M2M

4C4
1

Γ4(α)

∫ t

0

(t− η)2(α−1)

[∫ t

0

(t− s)2(α−1)Lσ‖ys − y∗s‖2Bhds
]
dη

+ 12M1M2M
2C2

1C
2
2Lg‖y − y∗‖2Bh

≤
(

4M2C2
1C

2
2Lgl + 4

M2C2
1

Γ2(α)
T 2α

[
Lf l

α2

(
1 +

3M1M2M
2C2

1T
2α

α2Γ2(α)

)
+

Lσl

T (2α− 1)

(
1 +

3M1M2M
2C2

1T
2α

T (2α− 1)α2Γ2(α)

)])
‖y − y∗‖2B0

T

= Λ‖y − y∗‖2B0
T
.
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By the condition (3.3), we obtain that Ψ̂∗2 is a contraction mapping. Hence,
by Krasnoselskii’s fixed point theorem we can conclude that the problem (4.1) has
a mild solution on (−∞, T ] and clearly, x(T ) = (Ψ∗x)(T ), which implies that the
system (4.1) is controllable on (−∞, T ]. This completes the proof of the theorem.

Example 4.4. Now, we present an example to illustrate Theorem 4.3. Consider the
fractional partial stochastic differential equation in the following form

Dα
t [z(t, x)− zxx(t, x)] = zxx(t, x) + µ(x, t) + F (t, z(t−R, x))

+G(t, z(t−R, x))
dω(t)

dt
, x ∈= [0, π], R > 0, t 6= tk

Ik(z(t−k , x)) = z(t+k , x)− z(t−k , x), k = 1, . . . , n
z(t, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π].
x(0, x) +

∫ π
0
H(x, y)z(t, y)dy = φ(t, x), t ∈ (−∞, 0].

(4.8)

where ω(t) is a standard cylindrical Wiener process in H defined on a stochastic
space (Ω,F ,P, {Ft}); Dα

t is the Caputo fractional derivative of order 0 < α < 1;
0 < t1 < t2 < . . . < tn < T are prefixed numbers. Let h(t) = e2t, t < 0, then

l =
∫ 0

−∞
h(s)
s ds = 1

2 and define

‖φ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(E|θ|2)

1
2 ds.

LetK = H = L2([0, π]) with the norm ‖·‖. Define the operators A : D(A) ⊂ H −→
H, L : D(L) ⊂ H −→ H, by Az = −z′′ and Lz = z − z′′ , where each domain D(A)
and D(L) is given by {z ∈ H, z, z′ are absolutely continuous , z

′′ ∈ H and z(0) =
z(π) = 0}.

Further, A and L can be Az =

∞∑
n=1

n2(z, zn)zn, z ∈ D(A), Lz =

∞∑
n=1

(1 +

n2)(z, zn)zn, z ∈ D(L), where zn(x) =
√

2
π sin(nx), n = 1, 2, . . . , is the orthogo-

nal set of vectors of A. Also, for z ∈ H L−1z =

∞∑
n=1

1

(1 + n2)
(z, zn)zn, AL−1z =

∞∑
n=1

n

(1 + n2)
(z, zn)zn, T (t)z =

∞∑
n=1

exp
n2t

(1 + n2)
(z, zn)zn.

It is easy to see that −AL−1 generates a uniformly continuous semigroup T (t), t ≥ 0
and so maxt∈[0,T ] ‖T (t)‖ is finite.

Hence for (t, φ) ∈ [0, T ] × Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π].
But z(t) = z(t, ·), that is z(t)(x) = z(t, x). Define f : [0, T ] × Bh −→ L2([0, π]),
σ : [0, T ] × Bh −→ L0

2. The bounded linear operator B : U −→ H is defined by
Bu(t)(x) = µ(t, x), 0 ≤ x ≤ π, u ∈ U ; as follows:
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g(z)(x) =

∫ π

0

H(x, y)z(t, y)dy ,

f(t, φ)x = F (t, x(·)) ,

σ(t, φ)x = G(t, x(·)) .

With the choice of A, f , g and σ can be rewritten as the abstract form of system
(4.1). Under the appropriate conditions on the functions f , σ, g and Ik as those in
(H1)-(H3) and (H4)-(H5), system (4.8) is controllable on (−∞, T ].
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