Journal of Mathematics and Applications
JMA No 41, pp 29-38 (2018)

On a Cubic Integral Equation of Urysohn Type with Linear Perturbation of Second Kind

Hamed Kamal Awad, Mohamed Abdalla Darwish and Mohamed M.A. Metwali

Abstract

In this paper, we concern by a very general cubic integral equation and we prove that this equation has a solution in $C[0,1]$. We apply the measure of noncompactness introduced by Banaś and Olszowy and Darbo's fixed point theorem to establish the proof of our main result.

AMS Subject Classification: 45G10, 45M99, 47H09.
Keywords and Phrases: Cubic integral equation; Darbo's fixed point theorem; Monotonicity measure of noncompactness.

1. Introduction

Cubic integral equations have several useful applications in modeling numerous problems and events of the real world (cf. $[3,8,9,12,13,18,19]$).

In this paper we consider the cubic Urysohn integral equation with linear perturbation of second kind

$$
\begin{equation*}
x(\tau)=\phi(\tau)+\varphi(\tau, x(\tau))+x^{2}(\tau) \int_{0}^{1} u(\tau, s,(\Lambda x)(s)) d s, \tau \in I=[0,1] \tag{1.1}
\end{equation*}
$$

In the above equation, we consider $\phi: I \rightarrow \mathbb{R}, \varphi: I \times \mathbb{R} \rightarrow \mathbb{R}, u: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ are given functions and $\Lambda: C(I) \rightarrow C(I)$ is an operator verifies special assumption which will state in Section 3.

Eq.(1.1) is of interest since it contains many includes several integral equations studied earlier as special cases, see $[1,2,6,7,10,11,14,15,16,20,21,22]$ and references therein. By using the measure of noncompactness related to monotonicity associated with fixed point theorem due to Darbo, we show that Eq.(1.1) has at least one solution in $C(I)$ which is nondecreasing on the interval I.

2. Auxiliary Facts and Results

In this section, we present some definitions and results which we will use further on.
Let $(E,\|\cdot\|)$ be a real Banach space with zero element 0 . Let $B(x, r)$ be the closed ball centered at x with radius r. We denote by B_{r} the closed ball $B(0, r)$. Next, let X be a subset of E, we denote by \bar{X} and $\operatorname{Conv} X$ the closure and convex closure of X, respectively. We use the symbols λX and $X+Y$ for the usual algebraic operations on the sets. Moreover, the symbol \mathfrak{M}_{E} stands for the family of all nonempty and bounded subsets of E and the symbol \mathfrak{N}_{E} stands for its subfamily consisting of all relatively compact subsets.

Now, we state the definition of a measure of noncompactness [4]:
Definition 2.1. A function $\mu: \mathfrak{M}_{E} \rightarrow \mathbb{R}_{+}$is called a measure of noncompactness in E if it verifies the following assumptions:
(1) The family $\operatorname{ker} \mu \neq \emptyset$ and $\operatorname{ker} \mu \subset \mathfrak{N}_{E}$, where $\operatorname{ker} \mu=\left\{X \in \mathfrak{M}_{E}: \mu(X)=0\right\}$.
(2) $\mu(X) \leq \mu(Y)$, if $X \subset Y$.
(3) $\mu(\bar{X})=\mu(X)$ and $\mu(\operatorname{Conv} X)=\mu(X)$.
(4) $\mu(\lambda X+(1-\lambda) Y) \leq \lambda \mu(X)+(1-\lambda) \mu(Y), 0 \leq \lambda \leq 1$.
(5) If $X_{n} \in \mathfrak{M}_{E}, X_{n}=\bar{X}_{n}, X_{n+1} \subset X_{n}$ for $n=1,2,3, \ldots$ and $\lim _{n \rightarrow \infty} \mu\left(X_{n}\right)=0$, then $\cap_{n=1}^{\infty} X_{n} \neq \emptyset$.

Notice that $\operatorname{ker} \mu$ is said to be the kernel of the measure of noncompactness μ.
In the following, we will work in the Banach space $C(I)$ of all real functions defined and continuous on $I=[0,1]$ equipped with the standard norm $\|x\|=\max \{|x(\tau)|$: $\tau \in I\}$. We recall the measure of noncompactness in $C(I)$ which we will need in the next section (see [5]).

Let $\emptyset \neq X \subset C(I)$. For $x \in X$ and $\varepsilon \geq 0$ we denote by $\omega(x, \varepsilon)$ the modulus of continuity of the function x as follows

$$
\omega(x, \varepsilon)=\sup \{|x(\tau)-x(t)|: \tau, t \in I,|\tau-t| \leq \varepsilon\}
$$

Next, we put $\omega(X, \varepsilon)=\sup \{\omega(x, \varepsilon): x \in X\}$ and $\omega_{0}(X)=\lim _{\varepsilon \rightarrow 0} \omega(X, \varepsilon)$. Moreover, we define

$$
d(x)=\sup \{|x(\tau)-x(t)|-[x(\tau)-x(t)]: \tau, t \in I, \tau \geq t\}
$$

and

$$
d(X)=\sup \{d(x): x \in X\} .
$$

Notice that $d(X)=0$ if and only if all functions belonging to X are nondecreasing on I.

Finally, we define the function μ on the family $\mathfrak{M}_{C(I)}$ as follows

$$
\mu(X)=\omega_{0}(X)+d(X)
$$

Notice that the function μ is a measure of noncompactness in $C(I)$ [5].
We present a fixed point theorem due to Darbo [17] which we will need in the proof of our main result. First, we make use of the following definition.

Definition 2.2. Let $\emptyset \neq M$ be a subset of a Banach space E and let $\mathfrak{P}: M \rightarrow E$ be a continuous mapping which maps bounded sets onto bounded sets. The operator \mathfrak{P} satisfies the Darbo condition (with a constant $\kappa \geq 0$) with respect to a measure of noncompactness μ if for any bounded subset X of M we have

$$
\mu(\mathfrak{P} X) \leq \kappa \mu(X)
$$

If \mathfrak{P} verifies the Darbo condition with $\kappa<1$ then it is a contraction operator with respect to μ.

Theorem 2.3. Let $\emptyset \neq \Omega$ be a closed, bounded and convex subset of the space E and let $\mathfrak{P}: \Omega \rightarrow \Omega$ be a contraction mapping with respect to the measure of noncompactness μ.
Then \mathfrak{P} has a fixed point in the set Ω.
Notice that the assumptions of the above theorem gives us that the set Fix \mathfrak{P} of all fixed points of \mathfrak{P} belongs to Ω is an element of $\operatorname{ker} \mu$ [4].

3. The Main Result

We consider Eq.(1.1) and assume that the following assumptions are verified:
$\left(a_{1}\right)$ The function $\phi: I \rightarrow \mathbb{R}$ is continuous, nonnegative and nondecreasing on I.
$\left(a_{2}\right)$ The function $\varphi: I \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\varphi: I \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and

$$
\exists c \geq 0:\left|\varphi\left(\tau, x_{1}\right)-\varphi\left(\tau, x_{2}\right)\right| \leq c\left|x_{1}-x_{2}\right| \quad \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \& \tau \in I
$$

$\left(a_{3}\right)$ The superposition operator Φ generated by the function φ satisfies for any nonnegative function x the condition $d(\Phi x) \leq c d(x)$, where c is the same c appears in assumption $\left(a_{2}\right)$.
$\left(a_{4}\right)$ The function $u: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous, $u: I \times I \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and for arbitrary fixed $t \in I$ and $x \in \mathbb{R}$ the function $\tau \rightarrow u(\tau, t, x)$ is nondecreasing on I. Moreover,

$$
\exists \Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \text {(nondecreasing) }:|u(\tau, t, x)| \leq \Psi(|x|) \quad \forall(\tau, t) \in I^{2} \& x \in \mathbb{R} .
$$

(a_{5}) The operator $\Lambda: C(I) \rightarrow C(I)$ is continuous and

$$
\exists \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}(\text {nondecreasing }):|(\Lambda x)(\tau)| \leq \psi(\|x\|) \text { for any } \tau \in I, x \in C(I)
$$

Moreover, for every nonnegative function $x \in C(I)$, the function Λx is nonnegative and nondecreasing on I.
$\left(a_{6}\right)$ The inequality

$$
\begin{equation*}
\|\phi\|+c r+\varphi^{*}+r^{2} \Psi(\psi(r)) \leq r \tag{3.1}
\end{equation*}
$$

has a positive solution r_{0} such that $c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)<1$, where $\varphi^{*}=\max _{0 \leq \tau \leq 1} \varphi(\tau, 0)$.
Under the above assumptions, we state our main result as follows.
Theorem 3.1. Let the assumptions $\left(a_{1}\right)-\left(a_{6}\right)$ be verified, then the cubic Urysohn integral equation (1.1) has at least one solution $x \in C(I)$ which is nondecreasing on I.

Proof. Let \mathfrak{F} be an operator defined on $C(I)$ by

$$
\begin{equation*}
(\mathfrak{F} x)(\tau)=\phi(\tau)+\varphi(\tau, x(\tau))+x^{2}(\tau)(\mathcal{U} x)(t) \tag{3.2}
\end{equation*}
$$

where \mathcal{U} is the Urysohn integral operator

$$
\begin{equation*}
(\mathcal{U} x)(\tau)=\int_{0}^{1} u(\tau, t,(\Lambda x)(t)) d t \tag{3.3}
\end{equation*}
$$

For better readability, we will write the proof in seven steps.
Step 1: \mathfrak{F} maps the space $C(I)$ into itself.
Notice that for a given $x \in C(I)$, according to assumptions $\left(a_{1}\right)-\left(a_{5}\right)$, we have $\mathfrak{F} x \in C(I)$. Therefore, the operator \mathfrak{F} maps $C(I)$ into itself.

Step 2: \mathfrak{F} maps the ball $B_{r_{0}}$ into itself.
For all $\tau \in I$, we have

$$
\begin{aligned}
|(\mathfrak{F} x)(\tau)| \leq & \left|\phi(\tau)+\varphi(\tau, x(\tau))+x^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda x)(t)) d t\right| \\
\leq & |\phi(\tau)|+|\varphi(\tau, x(\tau))-\varphi(\tau, 0)|+|\varphi(\tau, 0)| \\
& +\left|x^{2}(\tau)\right| \int_{0}^{1}|u(\tau, t,(\Lambda x)(t))| d t \\
\leq & \|\phi\|+c\|x\|+\varphi^{*}+\|x\|^{2} \Psi(\psi(\|x\|)) \int_{0}^{1} d s \\
= & \|\phi\|+c\|x\|+\varphi^{*}+\|x\|^{2} \Psi(\psi(\|x\|)) .
\end{aligned}
$$

From the above estimate, we get

$$
\|\mathfrak{F} x\| \leq\|\phi\|+c\|x\|+\varphi^{*}+\|x\|^{2} \Psi(\psi(\|x\|)) .
$$

Therefore, if we have $\|x\| \leq r_{0}$, we obtain

$$
\|\mathfrak{F} x\| \leq\|\phi\|+c r_{0}+\varphi^{*}+r_{0}^{2} \Psi\left(\psi\left(r_{0}\right)\right) \leq r_{0},
$$

in view of the assumption $\left(a_{6}\right)$. Consequently, the operator \mathfrak{F} maps the ball $B_{r_{0}}$ into itself.

Further, let $B_{r_{0}}^{+}$be the subset of $B_{r_{0}}$ given by

$$
B_{r_{0}}^{+}=\left\{x \in B_{r_{0}}: x(\tau) \geq 0, \text { for } \tau \in I\right\}
$$

Notice that, the set $\emptyset \neq B_{r_{0}}^{+}$is closed, bounded and convex.
Step 3: \mathfrak{F} maps continuously the ball $B_{r_{0}}^{+}$into itself.
In view of the above facts about $B_{r_{0}}^{+}$and assumptions $\left(a_{1}\right)-\left(a_{4}\right)$, we infer that \mathfrak{F} maps the set $B_{r_{0}}^{+}$into itself.

Step 4: The operator \mathfrak{F} is continuous on $B_{r_{0}}^{+}$.
To establish this, let us fix arbitrarily $\varepsilon>0$ and $y \in B_{r_{0}}^{+}$. By assumption $\left(a_{4}\right)$, we can find $\delta>0$ such that for arbitrary $x \in B_{r_{0}}^{+}$with $\|x-y\| \leq \delta$ we have that $\|\Lambda x-\Lambda y\| \leq \varepsilon$. Indeed, for each $\tau \in I$ we have

$$
\begin{aligned}
& |(\mathfrak{F} x)(\tau)-(\mathfrak{F} y)(\tau)| \\
& \leq|\varphi(\tau, x(\tau))-\varphi(\tau, y(\tau))| \\
& \quad+\left|x^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda x)(t)) d t-y^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda y)(t)) d t\right| \\
& \leq c|x(\tau)-y(\tau)|+\left|x^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda x)(t)) d t-y^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda x)(t)) d t\right| \\
& \quad+\left|y^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda x)(t)) d t-y^{2}(\tau) \int_{0}^{1} u(\tau, t,(\Lambda y)(t)) d t\right| \\
& \leq c|x(\tau)-y(\tau)|+\left|x^{2}(\tau)-y^{2}(\tau)\right| \int_{0}^{1}|u(\tau, t,(\Lambda x)(t))| d t \\
& \quad+\left|y^{2}(\tau)\right| \int_{0}^{1}|u(\tau, t,(\Lambda x)(t))-u(\tau, t,(\Lambda y)(t))| d t
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\|\mathfrak{F} x-\mathfrak{F} y\| \leq c\|x-y\|+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\|x-y\|+r_{0}^{2} \omega^{*}(u, \varepsilon), \tag{3.4}
\end{equation*}
$$

where we denoted

$$
\omega^{*}(u, \varepsilon)=\sup \left\{|u(\tau, t, x)-u(\tau, t, y)|: \tau, t \in I, x, y \in\left[0, \psi\left(r_{0}\right)\right],|x-y| \leq \varepsilon\right\} .
$$

From assumption $\left(a_{4}\right)$ we infer that $\omega^{*}(u, \varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and therefore, the operator \mathfrak{F} is continuous in $B_{r_{0}}^{+}$.

Step 5: An estimate of \mathfrak{F} with respect to the term related to continuity ω_{0}.
Let $\emptyset \neq X \subset B_{r_{0}}^{+}$, fix an arbitrarily number $\varepsilon>0$ and choose $x \in X$ and $\tau_{1}, \tau_{2} \in I$ such that $\left|\tau_{2}-\tau_{1}\right| \leq \varepsilon$. Without restriction of the generality, we may assume that $\tau_{1} \leq \tau_{2}$. In the view of our assumptions, we have

$$
\begin{aligned}
& \left|(\mathfrak{F} x)\left(\tau_{2}\right)-(\mathfrak{F} x)\left(\tau_{1}\right)\right| \\
& \leq\left|\phi\left(\tau_{2}\right)-\phi\left(\tau_{1}\right)\right|+\left|\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right| \\
& \quad+\left|x^{2}\left(\tau_{2}\right)(\mathcal{U} x)\left(\tau_{2}\right)-x^{2}\left(\tau_{2}\right)(\mathcal{U} x)\left(\tau_{1}\right)\right| \\
& \quad+\left|x^{2}\left(\tau_{2}\right)(\mathcal{U} x)\left(\tau_{1}\right)-x^{2}\left(\tau_{1}\right)(\mathcal{U} x)\left(\tau_{1}\right)\right| \\
& \leq \omega(\phi, \varepsilon)+\left|\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{2}\right)\right)\right|+\left|\varphi\left(\tau_{1}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right| \\
& \quad+\left|x^{2}\left(\tau_{2}\right)\right|\left|(\mathcal{U} x)\left(\tau_{2}\right)-(\mathcal{U} x)\left(\tau_{1}\right)\right|+\left|x^{2}\left(\tau_{2}\right)-x^{2}\left(\tau_{1}\right)\right|\left|(\mathcal{U} x)\left(\tau_{1}\right)\right| \\
& \leq \omega(\phi, \varepsilon)+\gamma_{r_{0}}(\varphi, \varepsilon)+c \omega(x, \varepsilon)+\left|x\left(\tau_{2}\right)\right|^{2}\left|(\mathcal{U} x)\left(\tau_{2}\right)-(\mathcal{U} x)\left(\tau_{1}\right)\right| \\
& \quad+\left|x\left(\tau_{2}\right)-x\left(\tau_{1}\right)\right|\left|x\left(\tau_{2}\right)+x\left(\tau_{1}\right)\right|\left|(\mathcal{U} x)\left(\tau_{1}\right)\right| \\
& \leq \omega(\phi, \varepsilon)+\gamma_{r_{0}}(\varphi, \varepsilon)+c \omega(x, \varepsilon) \\
& \quad+\|x\|^{2} \int_{0}^{1}\left|u\left(\tau_{2}, t,(\Lambda x)(t)\right)-u\left(\tau_{1}, t,(\Lambda x)(t)\right)\right| d t+2\|x\| \omega(x, \varepsilon) \Psi(\psi(\|x\|)) \\
& \leq \omega(\phi, \varepsilon)+\gamma_{r_{0}}(\varphi, \varepsilon)+c \omega(x, \varepsilon)+\|x\|^{2} \omega_{\psi(\|x\|)}(u, \varepsilon)+2\|x\| \omega(x, \varepsilon) \Psi(\psi(\|x\|)),
\end{aligned}
$$

where we denoted

$$
\gamma_{r_{0}}(\varphi, \varepsilon)=\sup \left\{\left|\varphi\left(\tau_{2}, x\right)-\varphi\left(\tau_{1}, x\right)\right|: \tau_{1}, \tau_{2} \in I, x \in\left[0, r_{0}\right],\left|\tau_{2}-\tau_{1}\right| \leq \varepsilon\right\}
$$

and

$$
\omega_{b}(u, \varepsilon)=\sup \left\{\left|u\left(\tau_{2}, t, y\right)-u\left(\tau_{1}, t, y\right)\right|: t, \tau_{1}, \tau_{2} \in I, y \in[0, b],\left|\tau_{2}-\tau_{1}\right| \leq \varepsilon\right\} .
$$

Hence,

$$
\omega(\mathfrak{F} x, \varepsilon) \leq \omega(\phi, \varepsilon)+\gamma_{r_{0}}(\varphi, \varepsilon)+c \omega(x, \varepsilon)+r_{0}^{2} \omega_{\psi\left(r_{0}\right)}(u, \varepsilon)+2 r_{0} \omega(x, \varepsilon) \Psi\left(\psi\left(r_{0}\right)\right) .
$$

Consequently,

$$
\omega(\mathfrak{F} X, \varepsilon) \leq \omega(\phi, \varepsilon)+\gamma_{r_{0}}(\varphi, \varepsilon)+\left(c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\right) \omega(X, \varepsilon)+r_{0}^{2} \omega_{\psi\left(r_{0}\right)}(u, \varepsilon) .
$$

Since the function ϕ is continuous on I, the function φ is uniformly continuous on $I \times\left[0, r_{0}\right]$ and the function u is uniformly continuous the set $I \times I \times\left[0, \psi\left(r_{0}\right)\right]$, then we obtain

$$
\begin{equation*}
\omega_{0}(\mathfrak{F} X) \leq\left(c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\right) \omega_{0}(X) . \tag{3.5}
\end{equation*}
$$

Step 6: An estimate of \mathfrak{F} with respect to the term related to monotonicity d.
Fix an arbitrary $x \in X$ and $\tau_{1}, \tau_{2} \in I$ with $\tau_{2}>\tau_{1}$. Then, taking into account our assumption, we get

$$
\begin{aligned}
& \left|(\mathfrak{F} x)\left(\tau_{2}\right)-(\mathfrak{F} x)\left(\tau_{1}\right)\right|-\left((\mathfrak{F} x)\left(\tau_{2}\right)-(\mathfrak{F} x)\left(\tau_{1}\right)\right) \\
& =\mid \phi\left(\tau_{2}\right)+\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)+x^{2}\left(\tau_{2}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
&-\phi\left(\tau_{1}\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)-x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{1}, t,(\Lambda x)(t)\right) d t \mid \\
&-\left(\phi\left(\tau_{2}\right)+\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)+x^{2}\left(\tau_{2}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t\right. \\
&\left.-\phi\left(\tau_{1}\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)-x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{1}, t,(\Lambda x)(t)\right) d t\right) \\
& \leq {\left[\left|\phi\left(\tau_{2}\right)-\phi\left(\tau_{1}\right)\right|-\left(\phi\left(\tau_{2}\right)-\phi\left(\tau_{1}\right)\right)\right] } \\
&+\left[\left|\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right|-\left(\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right)\right] \\
&+\left|x^{2}\left(\tau_{2}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t-x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t\right| \\
&+\left|x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t-x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{1}, t,(\Lambda x)(t)\right) d t\right| \\
&-\left(x^{2}\left(\tau_{2}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t-x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t\right) \\
&-\left(x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t-x^{2}\left(\tau_{1}\right) \int_{0}^{1} u\left(\tau_{1}, t,(\Lambda x)(t)\right) d t\right) \\
& \leq\left|\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right|-\left(\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right) \\
&+\left[\left|x^{2}\left(\tau_{2}\right)-x^{2}\left(\tau_{1}\right)\right|-\left(x^{2}\left(\tau_{2}\right)-x^{2}\left(\tau_{1}\right)\right)\right] \int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t \\
&+x^{2}\left(\tau_{1}\right)\left[\left|\int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t-\int_{0}^{1} u\left(\tau_{1}, t,(\Lambda x)(t)\right) d t\right|\right. \\
&\left.-\left(\int_{0}^{1} u\left(\tau_{2}, t,(\Lambda x)(t)\right) d t-\int_{0}^{1} u\left(\tau_{1}, t,(\Lambda x)(t)\right) d t\right)\right] \\
& \leq d(\Phi x)+2\|x\| \Psi(\psi(\|x\|)) d(x) .
\end{aligned}
$$

The above estimate gives us that

$$
d(\mathfrak{F} x) \leq c d(x)+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right) d(x)
$$

and consequently,

$$
\begin{equation*}
d(\mathfrak{F} X) \leq\left(c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\right) d(X) \tag{3.6}
\end{equation*}
$$

Step 7: \mathfrak{F} is a contraction with respect to the measure of noncompactness μ.
By adding (3.5) and (3.6), we get

$$
\omega_{0}(\mathfrak{F} X)+d(\mathfrak{F} X) \leq\left(c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\right) \omega_{0}(X)+\left(c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\right) d(X)
$$

or

$$
\mu(\mathfrak{F} X) \leq\left(c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)\right) \mu(X)
$$

Since $c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)<1$, then the operator \mathfrak{F} is contraction with respect to the measure of noncompactness μ.

Finally, Theorem 2.3 guarantees that Eq.(1.1) has at least one solution $x \in C(I)$ which is nondecreasing on I. This completes the proof.

4. Example

Let us consider the cubic Urysohn integral equation

$$
\begin{equation*}
x(\tau)=\frac{\sqrt{\tau}}{8}+\frac{\tau x(\tau)}{1+\tau^{2}}+\frac{x^{2}(\tau)}{4} \int_{0}^{1} \arctan \left(\frac{\tau \int_{0}^{t} s x^{2}(s) d s}{1+t^{2}}\right) d t \tag{4.1}
\end{equation*}
$$

Here, $\phi(\tau)=\frac{\sqrt{\tau}}{8}$ and this function verifies assumption $\left(a_{1}\right)$ and $\|\phi\|=1 / 8$. Also, $\varphi(\tau, x)=\frac{\tau x}{1+\tau^{2}}$ and this function verifies assumption $\left(a_{2}\right)$ with

$$
|\varphi(\tau, x)-\varphi(\tau, y)| \leq \frac{1}{2}|x-y| \quad \forall t \in I \&(x, y) \in \mathbb{R}^{2}
$$

Moreover, the function φ verifies assumption $\left(a_{3}\right)$. Indeed, for arbitrary nonnegative function $x \in C(I)$ and $\tau_{1}, \tau_{2} \in I$ with $\tau_{1} \leq \tau_{2}$, we have

$$
\begin{aligned}
d(\Phi x)= & \left|(\Phi x)\left(\tau_{2}\right)-(\Phi x)\left(\tau_{1}\right)\right|-\left((\Phi x)\left(\tau_{2}\right)-(\Phi x)\left(\tau_{1}\right)\right) \\
= & \left|\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right|-\left(\varphi\left(\tau_{2}, x\left(\tau_{2}\right)\right)-\varphi\left(\tau_{1}, x\left(\tau_{1}\right)\right)\right) \\
= & \left|\frac{\tau_{2}}{1+\tau_{2}^{2}} x\left(\tau_{2}\right)-\frac{\tau_{1}}{1+\tau_{1}^{2}} x\left(\tau_{1}\right)\right|-\left(\frac{\tau_{2}}{1+\tau_{2}^{2}} x\left(\tau_{2}\right)-\frac{\tau_{1}}{1+\tau_{1}^{2}} x\left(\tau_{1}\right)\right) \\
\leq & \frac{\tau_{2}}{1+\tau_{2}^{2}}\left|x\left(\tau_{2}\right)-x\left(\tau_{1}\right)\right|+\left|\frac{\tau_{2}}{1+\tau_{2}^{2}}-\frac{\tau_{1}}{1+\tau_{1}^{2}}\right| x\left(\tau_{1}\right) \\
& \quad-\frac{\tau_{2}}{1+\tau_{2}^{2}}\left(x\left(\tau_{2}\right)-x\left(\tau_{1}\right)\right)-\left(\frac{\tau_{2}}{1+\tau_{2}^{2}}-\frac{\tau_{1}}{1+\tau_{1}^{2}}\right) x\left(\tau_{1}\right) \\
= & \frac{\tau_{2}}{1+\tau_{2}^{2}}\left[\left|x\left(\tau_{2}\right)-x\left(\tau_{1}\right)\right|-\left(x\left(\tau_{2}\right)-x\left(\tau_{1}\right)\right)\right] \\
= & \frac{\tau_{2}}{1+\tau_{2}^{2}} d(x) \leq \frac{1}{2} d(x) .
\end{aligned}
$$

The function $u(\tau, t, x)=\arctan \frac{\tau x}{1+t^{2}}$ satisfies assumption $\left(a_{4}\right)$, we have $|u(\tau, t, x)| \leq|x|$ which means $\Psi(r)=r$. Moreover, the operator $(\Lambda x)(\tau)=\int_{0}^{\tau} t x^{2}(t) d t$ verifies assumption $\left(a_{5}\right)$ with $\psi(r)=r^{2}$.

Therefore, the inequality (3.1) has the form $\frac{1}{8}+\frac{r}{2}+r^{4} \leq r$ or $\frac{1}{4}+r+2 r^{4} \leq 2 r$. This inequality admits $r_{0}=1 / 2$ as a positive solution. Moreover,

$$
c+2 r_{0} \Psi\left(\psi\left(r_{0}\right)\right)=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}<1
$$

Consequently, Theorem 3.1 guarantees that equation (4.1) has a continuous nondecreasing solution.

References

[1] J. Appell, Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl. 3 (1981) 251263.
[2] J. Appell, C. Chen, How to solve Hammerstein equations, J. Integral Equations Appl. 18 (2006) 287-296.
[3] H.K. Awad, M.A. Darwish, On monotonic solutions of a cubic Urysohn Integral equation with linear modification of the argument, Adv. Dyn. Syst. Appl. 13 (2018) 91-99.
[4] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60 Marcel Dekker, New York, 1980.
[5] J. Banaś, L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (2001) 13-23.
[6] M. Benchohra, M.A. Darwish, On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes 10 (2009) 3-10.
[7] T.A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.
[8] K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA, 1967.
[9] J. Caballero, D. O'Regan, K. Sadarangani, On nondecreasing solutions of cubic integral equations of Urysohn type, Comment. Math. (Prace Mat.) 44 (2004) 3953.
[10] M.A. Darwish, On integral equations of Urysohn-Volterra type, Appl. Math. Comput. 136 (2003) 93-98.
[11] M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005) 112-119.
[12] M.A. Darwish, On monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Syst. Appl. 17 (2008) 539-549.
[13] K. Deimling, Nonlinear Fuctional Analysis, Springer-Verlag, Berlin, 1985.
[14] W.G. El-Sayed, A.A. El-Bary, M.A. Darwish, Solvability of Urysohn integral equation, Appl. Math. Comput. 145 (2003) 487-493.
[15] W.G. El-Sayed, B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comput. Math. Appl. 51 (2006) 1065-1074.
[16] D. Franco, G. Infante, D. O'Regan, Positive and nontrivial solutions for the Urysohn integral equation, Acta Math. Sin. (Engl. Ser.) 22 (2006) 1745-1750.
[17] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[18] S. Hu, M. Khavani, W. Zhuang, Integral equations arrising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261-266.
[19] C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Eq. 4 (1982) 221-237.
[20] D. O'Regan, M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, Kluwer Academic Publishers, Dordrecht, 1998.
[21] M. Väth, Volterra and Integral Equations of Vector Functions, Monographs and Textbooks in Pure and Applied Mathematics 224, Marcel Dekker, Inc., New York, 2000.
[22] P.P. Zabrejko et al., Integral Equations - a Reference Text, Noordhoff International Publishing, The Netherlands 1975 (Russian edition: Nauka, Moscow, 1968).

DOI: 10.7862/rf.2018.3

Hamed Kamal Awad
email: hamedk66@sci.dmu.edu.eg
ORCID: 0000-0003-4866-3164
Department of Mathematics, Faculty of Science
Damanhour University
Damanhour
EGYPT

Mohamed Abdalla Darwish

email: dr.madarwish@gmail.com
ORCID: 0000-0002-4245-4364
Department of Mathematics, Faculty of Science
Damanhour University
Damanhour
EGYPT
Mohamed M.A. Metwali
email: m.metwali@yahoo.com
ORCID: 0000-0003-1091-8619
Department of Mathematics, Faculty of Science
Damanhour University
Damanhour
EGYPT

