JMA No 38, pp 115-131 (2015)

Some seminormed difference sequence spaces defined by a Musielak-Orlicz function over *n*-normed spaces

Kuldip Raj and Sunil K. Sharma

ABSTRACT: In the present paper we introduced some seminormed difference sequence spaces combining lacunary sequences and Musielak-Orlicz function $\mathcal{M}=(M_k)$ over *n*-normed spaces and examine some topological properties and inclusion relations between resulting sequence spaces.

AMS Subject Classification: 40A05, 46A45.

Keywords and Phrases: Paranorm space, Difference sequence spaces, Orlicz function, Musielak-Orlicz function, n-normed spaces

1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler [6] in the mid of 1960's, while that of n-normed spaces one can see in Misiak [17]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7], [8]) and Gunawan and Mashadi [9] and many others. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- 2. $||x_1, x_2, \dots, x_n||$ is invariant under permutation;
- 3. $||\alpha x_1, x_2, \cdots, x_n|| = |\alpha| \ ||x_1, x_2, \cdots, x_n||$ for any $\alpha \in \mathbb{K}$, and
- 4. $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called a *n*-norm on X, and the pair $(X, ||\cdot, \cdots, \cdot||)$ is called a *n*-normed space over the field \mathbb{K} .

For example, we may take $X = \mathbb{R}^n$ being equipped with the Euclidean n-norm

 $||x_1, x_2, \dots, x_n||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, ||\cdot, \dots, \cdot||)$ be an n-normed space of dimension $d \ge n \ge 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \dots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \cdots, a_n\}$.

A sequence (x_k) in a n-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be Cauchy if

$$\lim_{k,i\to\infty} ||x_k - x_i, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

An Orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences $x = (x_k)$, then

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [12] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p \ge 1)$. The Δ_2 -condition is equivalent to $M(Lx) \le kLM(x)$ for all values of $x \ge 0$, and for L > 1. A sequence $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function see ([16], [20]). A sequence $\mathcal{N} = (N_k)$ is defined by

$$N_k(v) = \sup\{|v|u - (M_k) : u \ge 0\}, \ k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \left\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \right\},$$

$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} (M_k)(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

Let ℓ_{∞} , c and c_0 denotes the sequence spaces of bounded, convergent and null sequences $x=(x_k)$ respectively. A sequence $x=(x_k)\in\ell_{\infty}$ is said to be almost convergent if all Banach limits of $x=(x_k)$ coincide. In [13], it was shown that

$$\hat{c} = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n x_{k+s} \text{ exists, uniformly in } s \right\}.$$

In ([14], [15]) Maddox defined strongly almost convergent sequences. Recall that a sequence $x = (x_k)$ is strongly almost convergent if there is a number L such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s} - L| = 0, \text{ uniformly in } s.$$

By a lacunary sequence $\theta = (i_r)$, $r = 0, 1, 2, \dots$, where $i_0 = 0$, we shall mean an increasing sequence of non-negative integers $g_r = (i_r - i_{r-1}) \to \infty$ $(r \to \infty)$. The intervals determined by θ are denoted by $I_r = (i_{r-1}, i_r]$ and the ratio i_r/i_{r-1} will be denoted by q_r . The space of lacunary strongly convergent sequences N_{θ} was defined by Freedman et. al [5] as follows:

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} |x_k - L| = 0 \text{ for some } L \right\}.$$

The notion of difference sequence spaces was introduced by Kızmaz [11], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [4] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Let m, n be non-negative integers, then for $Z = c, c_0$ and l_{∞} , we have sequence spaces

$$Z(\Delta_n^m) = \{ x = (x_k) \in w : (\Delta_n^m x_k) \in Z \}$$

for $Z=c, c_0$ and l_{∞} where $\Delta_n^m x=(\Delta_n^m x_k)=(\Delta_n^{m-1} x_k-\Delta_n^{m-1} x_k)$ and $\Delta^0 x_k=x_k$ for all $k\in\mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_n^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+nv}.$$

Taking n=1, we get the spaces $l_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$ studied by Et and Çolak [4]. Taking m=1, n=1, we get the spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ studied by Kızmaz [11]. Let X be a linear metric space. A function $p:X\to\mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$ for all $x \in X$,
- 2. p(-x) = p(x) for all $x \in X$,
- 3. p(x+y) < p(x) + p(y) for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [26], Theorem 10.4.2, pp. 183). For more details about sequence spaces see ([1], [2], [3], [18], [19], [21], [22], [23], [24], [25]) and references therein.

Let M be an Orlicz function and $p = (p_k)$ be any sequence of strictly positive real numbers. Güngor and Et [10] defined the following sequence spaces:

$$[c, M, p](\Delta^m) = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left[M\left(\frac{|\Delta^m x_{k+s} - L|}{\rho}\right) \right]^{p_k} = 0, \right\}$$

uniformly in s, for some $\rho > 0$ and L > 0,

$$[c, M, p]_0(\Delta^m) = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left[M\left(\frac{|\Delta^m x_{k+s}|}{\rho}\right) \right]^{p_k} = 0, \right\}$$

uniformly in s, for some $\rho > 0$ $\}$,

$$[c,M,p]_{\infty}(\Delta^m) = \left\{ x = (x_k) : \sup_{n,s} \frac{1}{n} \sum_{k=1}^n \left[M\left(\frac{|\Delta^m x_{k+s}|}{\rho}\right) \right]^{p_k} < \infty \text{ for some } \rho > 0 \right\}.$$

Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and X be a seminormed space, seminormed by $q = (q_k)$. Let $p = (p_k)$ be any bounded sequence of positive real numbers and $u = (u_k)$ be any sequence of strictly positive real numbers. In this paper we define the following sequence spaces:

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n-X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} = 0,$$

 $\text{uniformly in } s, \ z_1, \cdots, z_{n-1} \in X \ \text{for some} \ L \ \text{and} \ \rho > 0 \Big\},$

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} = 0,$$

uniformly in $s, z_1, \dots, z_{n-1} \in X$ for some $\rho > 0$ $\}$,

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n-X) : \sup_{r,s} \frac{1}{g_r} \sum_{k=1}^n \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} < \infty, \right\}$$

uniformly in $s, z_1, \dots, z_{n-1} \in X$ for some $\rho > 0$.

When,
$$\mathcal{M}(x) = x$$
, we get $[c, p, || \cdot, \dots, \cdot ||]^{\theta} (\Delta_n^m, u, q) =$

$$\left\{ x = (x_k) \in w(n-X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right)^{p_k} = 0, \right\}$$

uniformly in $s, z_1, \dots, z_{n-1} \in X$ for some L and $\rho > 0$,

$$[c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_n} \left(q_k \left(||u_k \frac{\Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right)^{p_k} = 0, \right\}$$

uniformly in $s, z_1, \dots, z_{n-1} \in X$ for some $\rho > 0$ $\}$,

$$[c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n - X) : \sup_{r,s} \frac{1}{g_r} \sum_{k=1}^n \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right)^{p_k} < \infty, \right\}$$

$$z_1, \cdots, z_{n-1} \in X$$
 for some $\rho > 0$.

If we take $p_k = 1$ for all k, then we get

$$[c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n-X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in L} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right] = 0,$$

uniformly in $s, z_1, \dots, z_{n-1} \in X$ for some L and $\rho > 0$,

$$[c, \mathcal{M}, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right] = 0, \right\}$$

uniformly in
$$s, z_1, \dots, z_{n-1} \in X$$
 for some $\rho > 0$ $\}$,

$$[c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta_n^m, u, q) =$$

$$\left\{ x = (x_k) \in w(n - X) : \sup_{r,s} \frac{1}{g_r} \sum_{k=1}^n \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right] < \infty, \right\}$$

$$z_1, \dots, z_{n-1} \in X$$
 for some $\rho > 0$.

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = H$, $D = \max(1, 2^{H-1})$ then

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}$$
(1.1)

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \leq \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

The main aim of this paper is to study some seminormed difference sequence spaces defined by a Musielak-Orlicz function over n-normed space. We also make an effort to study some topological properties and prove some inclusion relations between these spaces.

2 Main Results

Theorem 2.1 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be any sequence of strictly positive real numbers. Then the spaces $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q)$, $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q)$ and $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q)$ are linear over the field of complex numbers \mathbb{C} .

Proof. Let $x = (x_k)$, $y = (y_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^\theta(\Delta_n^m, u, q)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists positive numbers ρ_1 and ρ_2 such that

$$\lim_{r \longrightarrow \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} = 0, \text{ uniformly in } s,$$

and

$$\lim_{r \longrightarrow \infty} \frac{1}{g_r} \sum_{k \in I} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho_2}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} = 0, \text{ uniformly in } s.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\mathcal{M} = (M_k)$ is non-decreasing convex function, by using inequality (1.1), we have

$$\begin{split} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m (\alpha x_{k+s} + \beta y_{k+s})}{\rho_3}, z_1, \cdots, z_{n-1} || \Big) \Big) \right]^{p_k} \\ & \leq D \frac{1}{g_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m (x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \\ & + D \frac{1}{g_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m (y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \\ & \leq D \frac{1}{g_r} \sum_{k \in I_r} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m (x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \\ & + D \frac{1}{g_r} \sum_{k \in I_r} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m (y_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \\ & \to 0 \text{ as } r \to \infty, \text{ uniformly in } s. \end{split}$$

Thus, we have $\alpha x + \beta y \in [c, \mathcal{M}, p, ||\cdot, \cdot \cdot \cdot, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$.

Hence $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^\theta(\Delta_n^m, u, q)$ is a linear space. Similarly, we can prove that $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^\theta(\Delta_n^m, u, q)$ and $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_\infty^\theta(\Delta_n^m, u, q)$ are linear spaces. \blacksquare

Theorem 2.2 For any Musielak-Orlicz function $\mathcal{M} = (M_k)$, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be any sequence of strictly positive real numbers, the space $[c, \mathcal{M}, p, || \cdot, \cdots, \cdot ||]_0^p (\Delta_n^m, u, q)$ is a topological linear space paranormed by

$$g(x) = \inf \left\{ \rho^{\frac{p_r}{K}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1, r, s \in \mathbb{N} \right\},$$

where $K = \max(1, \sup_k p_k < \infty)$.

Proof. Clearly $g(x) \ge 0$ for $x = (x_k) \in [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$. Since $M_k(0) = 0$, we get g(0) = 0. Again, if g(x) = 0, then

$$\inf\left\{\rho^{\frac{p_r}{K}}: \left(\frac{1}{g_r}\sum_{k\in I_r}\left[M_k\left(q_k\left(||\frac{u_k\Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}||\right)\right)\right]^{p_k}\right)^{\frac{1}{K}} \leq 1, r, s \in \mathbb{N}\right\} = 0.$$

This implies that for a given $\epsilon > 0$, there exists some $\rho_{\epsilon}(0 < \rho_{\epsilon} < \epsilon)$ such that

$$\left(\frac{1}{g_r}\sum_{k\in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho_\epsilon}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1.$$

Thus

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(\left| \left| \frac{u_k \Delta_n^m x_{k+s}}{\epsilon}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \\
\leq \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(\left| \left| \frac{\Delta^m x_{k+s}}{\rho_{\epsilon}}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \\
< 1.$$

for each r and s. Suppose that $x_k \neq 0$ for each $k \in N$. This implies that $\Delta_n^m x_{k+s} \neq 0$, for each $k, s \in N$. Let $\epsilon \longrightarrow 0$, then $q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\epsilon}, z_1, \cdots, z_{n-1}|| \right) \longrightarrow \infty$. It follows that

$$\left(\frac{1}{g_r}\sum_{k\in I_n}\left[M_k\left(q_k\left(||\frac{u_k\Delta_n^m x_{k+s}}{\epsilon}, z_1, \cdots, z_{n-1}||\right)\right)\right]^{p_k}\right)^{\frac{1}{K}} \longrightarrow \infty,$$

which is a contradiction. Therefore, $\Delta_n^m x_{k+s} = 0$ for each k and s and thus $x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\frac{1}{g_r}\sum_{k\in I_r}\left[M_k\left(q_k\left(\left|\left|\frac{u_k\Delta_n^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1}\right|\right|\right)\right)\right]^{p_k}\right)^{\frac{1}{K}} \le 1$$

and

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(\left| \left| \frac{u_k \Delta_n^m x_{k+s}}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1$$

for each r and s. Let $\rho = \rho_1 + \rho_2$. Then, by Minkowski's inequality, we have

$$\begin{split} & \Big(\frac{1}{g_r} \sum_{k \in I_r} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m(x_{k+s} + y_{k+s})}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \Big)^{\frac{1}{K}} \\ & \leq \Big(\sum_{k \in I_r} \Big[\frac{\rho_1}{\rho_1 + \rho_2} M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m(x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big) \\ & \quad + \frac{\rho_2}{\rho_1 + \rho_2} M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m(y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \Big)^{\frac{1}{K}} \\ & \leq \Big(\frac{\rho_1}{\rho_1 + \rho_2} \Big) \Big(\frac{1}{g_r} \sum_{k \in I_r} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m(x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \Big)^{\frac{1}{K}} \\ & \quad + \Big(\frac{\rho_2}{\rho_1 + \rho_2} \Big) \Big(\frac{1}{g_r} \sum_{k \in I_r} \Big[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m(y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_k} \Big)^{\frac{1}{K}} \\ & \leq 1 \end{split}$$

Since $\rho's$ are non-negative, so we have

g(x+y)

$$= \inf \left\{ \rho^{\frac{p_r}{K}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m (x_{k+s} + y_{k+s})}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1, r, s \in \mathbb{N} \right\},$$

$$\le \inf \left\{ \rho^{\frac{p_r}{K}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m (x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1, r, s \in \mathbb{N} \right\}$$

$$+ \inf \left\{ \rho^{\frac{p_r}{K}} : \left(\frac{1}{g_r} \sum_{k \in I} \left[M_k \left(q_k \left(|| \frac{\Delta^m (y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1, r, s \in \mathbb{N} \right\}.$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_r}{K}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m \lambda x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1, r, s \in \mathbb{N} \right\}.$$

Then

$$g(\lambda x) = \inf \left\{ (|\lambda|t)^{\frac{p_r}{K}} : \left(\frac{1}{g_r} \sum_{k \in I} \left[M_k \left(q_k \left(|| \frac{\Delta^m x_{k+s}}{t}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right)^{\frac{1}{K}} \le 1, r, s \in \mathbb{N} \right\},$$

where $t = \frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_r} \leq \max(1, |\lambda|^{\sup p_r})$, we have $g(\lambda x) \leq \max(1, |\lambda|^{\sup p_r})$

$$\inf\Big\{t^{\frac{p_r}{K}}:\Big(\frac{1}{g_r}\sum_{k\in I}\Big[M_k\Big(q_k\Big(||\frac{u_k\Delta_n^mx_{k+s}}{t},z_1,\cdots,z_{n-1}||\Big)\Big)\Big]^{p_k}\Big)^{\frac{1}{K}}\leq 1, r,s\in\mathbb{N}\Big\}.$$

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof of the theorem.■

Theorem 2.3 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. If $\sup_k [M_k(x)]^{p_k} < \infty$ for all fixed x > 0, then $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q)$. **Proof.** Let $x = (x_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$. There exists some positive ρ_1 such that

$$\lim_{r\to\infty}\frac{1}{g_r}\sum_{k\in I_r}\left[M_k\Big(q_k\Big(||\frac{\Delta_n^mx_{k+s}}{\rho_1},z_1,\cdots,z_{n-1}||\Big)\Big)\right]^{p_k}=0, \ \text{ uniformly in } \ s.$$

Define $\rho = 2\rho_1$. Since $\mathcal{M} = (M_k)$ is non-decreasing and convex, by using inequality (1.1), we have

$$\begin{split} \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big) \right]^{p_k} \\ & \leq D \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[\frac{1}{2^{p_k}} M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \right]^{p_k} \\ & + D \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[\frac{1}{2^{p_k}} M_k \Big(q_k \Big(|| \frac{L}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \right]^{p_k} \\ & \leq D \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \Big(q_k \Big(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \right]^{p_k} \\ & + D \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \Big(q_k \Big(|| \frac{L}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \right]^{p_k} \end{split}$$

Hence $x = (x_k) \in [c, \mathcal{M}, p, ||\cdot, \cdot \cdot \cdot, \cdot ||]_{\infty}^{\theta}(\Delta_n^m, u, q)$.

Theorem 2.4 If $0 < \inf p_k = h \le p_k \le \sup p_k = H < \infty$ and $\mathcal{M} = (M_k)$, $\mathcal{M}' = (M'_k)$ be two Musielak-Orlicz functions satisfying Δ_2 -condition, then we have

$$(i)[c,\mathcal{M}',p,||\cdot,\cdots,\cdot||]_0^\theta(\Delta_n^m,u,q)\subset [c,\mathcal{M}\circ\mathcal{M}',p,||\cdot,\cdots,\cdot||]_0^\theta(\Delta_n^m,u,q),$$

$$(ii)[c,\mathcal{M}',p,||\cdot,\cdots,\cdot||]^{\theta}(\Delta_n^m,u,q)\subset [c,\mathcal{M}\circ\mathcal{M}',p,||\cdot,\cdots,\cdot||]^{\theta}(\Delta_n^m,u,q),$$

$$(iii)[c,\mathcal{M}',p,||\cdot,\cdots,\cdot||]^{\theta}_{\infty}(\Delta^{m}_{n},u,q)\subset [c,\mathcal{M}\circ\mathcal{M}',p,||\cdot,\cdots,\cdot||]^{\theta}_{\infty}(\Delta^{m}_{n},u,q).$$

Proof. Let $x = (x_k) \in [c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q)$. Then we have

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k' \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} = 0,$$

uniformly in s for some L.

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_k(t) < \epsilon$ for $0 \le t \le \delta$. Let

$$y_{k,s} = M'_k \left(q_k \left(\left| \left| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right)$$
 for all $k, s \in \mathbb{N}$.

We can write

$$\frac{1}{g_r} \sum_{k \in I_r} [M_k(y_{k,s})]^{p_k} = \frac{1}{g_r} \sum_{k \in I_r, y_{k,s} < \delta} [M_k(y_{k,s})]^{p_k} + \frac{1}{g_r} \sum_{k \in I_r, y_{k,s} > \delta} [M_k(y_{k,s})]^{p_k}.$$

Since $\mathcal{M} = (M_k)$ satisfies Δ_2 -condition, we have

$$\frac{1}{g_r} \sum_{k \in I_r, y_{k,s} \le \delta} [M_k(y_{k,s})]^{p_k} \le [M_k(1)]^H \frac{1}{g_r} \sum_{k \in I_r, y_{k,s} \le \delta} [M_k(y_{k,s})]^{p_k}
\le [M_k(2)]^H \frac{1}{g_r} \sum_{k \in I_r, y_{k,s} \le \delta} [M_k(y_{k,s})]^{p_k}$$
(2.1)

For $y_{k,s} > \delta$

$$y_{k,s} < \frac{y_{k,s}}{\delta} < 1 + \frac{y_{k,s}}{\delta}.$$

Since $\mathcal{M} = (M_k)$ is non-decreasing and convex, it follows that

$$M_k(y_{k,s}) < M_k \left(1 + \frac{y_{k,s}}{\delta} \right) < \frac{1}{2} M_k(2) + \frac{1}{2} M_k \left(\frac{2y_{k,s}}{\delta} \right).$$

Since (M_k) satisfies Δ_2 -condition, we can write

$$M_k(y_{k,s}) < \frac{1}{2} T \frac{y_{k,s}}{\delta} M_k(2) + \frac{1}{2} T \frac{y_{k,s}}{\delta} M_k(2) = T \frac{y_{k,s}}{\delta} M_k(2).$$

Hence,

$$1g_r \sum_{k \in I_r, y_{k,s} > \delta} [M_k(y_{k,s})]^{p_k} \le \max\left(1, \left(\frac{TM_k(2)}{\delta}\right)^H\right) \frac{1}{g_r} \sum_{k \in I_r, y_{k,s} > \delta} [(y_{k,s})]^{p_k}$$
(2.2)

from equations (2.1) and (2.2), we have

$$x = (x_k) \in [c, \mathcal{M} \circ \mathcal{M}', p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q).$$

This completes the proof of (i). Similarly, we can prove that

$$[c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M} \circ \mathcal{M}', ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$$

and

$$[c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta_n^m, u, q) \subset [c, \mathcal{M} \circ \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta_n^m, u, q).$$

Corollary 2.5 If $0 < \inf p_k = h \le p_k \le \sup p_k = H < \infty$ and $\mathcal{M} = (M_k)$ be Musielak-Orlicz function satisfying Δ_2 - condition, then we have

$$[c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$$

and

$$[\ c,p,||\cdot,\cdots,\cdot||\]^{\theta}_{\infty}(\Delta^m_n,u,q)\subset [\ c,\mathcal{M},p,||\cdot,\cdots,\cdot||\]^{\theta}_{\infty}(\Delta^m_n,u,q).$$

Proof. Taking $\mathcal{M}'(x) = x$ in the above theorem, we get the required result.

Theorem 2.6 If $\mathcal{M} = (M_k)$ be the Musielak-Orlicz function, then the following statements are equivalent:

$$(i) [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q),$$

$$(ii) \ [c,p,||\cdot,\cdots,\cdot||\]_0^{\sigma}(\Delta_n^m,u,q) \subset [c,\mathcal{M},p,||\cdot,\cdots,\cdot||\]_{\infty}^{\sigma}(\Delta_n^m,u,q)$$

ments are equivalent:
(i)
$$[c, p, || \cdot, \dots, \cdot ||]_{\infty}^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, || \cdot, \dots, \cdot ||]_{\infty}^{\theta}(\Delta_n^m, u, q),$$

(ii) $[c, p, || \cdot, \dots, \cdot ||]_{0}^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, || \cdot, \dots, \cdot ||]_{\infty}^{\theta}(\Delta_n^m, u, q),$
(iii) $\sup_{r} \frac{1}{g_r} \sum_{k \in I_r} [M_k(\frac{t}{\rho})]^{p_k} < \infty \quad (t, \rho > 0).$

Proof. (i) \Rightarrow (ii) The proof is obvious in view of the fact that

$$[c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q).$$

(ii) \Rightarrow (iii) Let $[c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q)$. Suppose that (iii) does not hold. Then for some $t, \rho > 0$

$$\sup_{r} \frac{1}{g_r} \sum_{k \in I_r} [M_k(\frac{t}{\rho})]^{p_k} = \infty$$

and therefore we can find a subinterval $I_{r(j)}$ of the set of interval I_r such that

$$1g_{r(j)} \sum_{k \in I_{r(j)}} \left[M_k \left(\frac{j^{-1}}{\rho} \right) \right]^{p_k} > j, \quad j = 1, 2,$$
 (2.3)

Define the sequence $x = (x_k)$ by

$$\Delta^m x_{k+s} = \left\{ \begin{array}{ll} j^{-1}, & k \in I_{r(j)} \\ 0, & k \not \in I_{r(j)} \end{array} \right. \text{ for all } s \in \mathbb{N}.$$

Then $x = (x_k) \in [c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$ but by equation(2.3), $x = (x_k) \notin [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q)$, which contradicts (ii). Hence (iii) must

(iii) \Rightarrow (i) Let (iii) hold and $x = (x_k) \in [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q)$. Suppose that $x = (x_k) \notin [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q)$. Then

$$\sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = \infty.$$
 (2.4)

Let $t = q_k \Big(||u_k \Delta_n^m x_{k+s}, z_1, \cdots, z_{n-1}|| \Big)$ for each k and fixed s, then by equations (2.4)

$$\sup_{r} \frac{1}{g_r} \sum_{k \in I} \left[M_k \left(\frac{t}{\rho} \right) \right] = \infty,$$

which contradicts (iii). Hence (i) must hold.■

Theorem 2.7 Let $1 \le p_k \le \sup p_k < \infty$ and $\mathcal{M} = (M_k)$ be a Musielak Orlicz function. Then the following statements are equivalent:

(i)
$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q),$$

(ii) $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q) \subset [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta_n^m, u, q),$
(iii) $\inf \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right]^{p_k} > 0 \quad (t, \rho > 0).$

Proof. (i) \Rightarrow (ii) It is trivial.

 $(ii) \Rightarrow (iii)$ Let (ii) hold. Suppose that (iii) does not hold. Then

$$\inf_{r} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right]^{p_k} = 0 \quad (t, \rho > 0),$$

so we can find a subinterval $I_{r(j)}$ of the set of interval I_r such that

$$\frac{1}{g_{r(j)}} \sum_{k \in I_{r(j)}} \left[M_k \left(\frac{j}{\rho} \right) \right]^{p_k} < j^{-1}, \quad j = 1, 2, \tag{2.5}$$

Define the sequence $x = (x_k)$ by

$$\Delta^m x_{k+s} = \left\{ \begin{array}{ll} j, & k \in I_{r(j)} \\ 0, & k \not\in I_{r(j)} \end{array} \right. \text{ for all } s \in \mathbb{N}.$$

Thus by equation(2.5), $x=(x_k)\in [c,\mathcal{M},p,||\cdot,\cdots,\cdot||]_0^\theta(\Delta_n^m,u,q)$, hence $x=(x_k)\not\in [c,p,||\cdot,\cdots,\cdot||]_\infty^\theta(\Delta_n^m,u,q)$, which contradicts (ii). Hence (iii) must hold.

(iii) \Rightarrow (i) Let (iii) hold and suppose that $x = (x_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_n^m, u, q)$, i.e,

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} = 0, \tag{2.6}$$

uniformly in s, for some $\rho > 0$.

Again, suppose that $x=(x_k) \notin [c,p,||\cdot,\cdot\cdot\cdot,\cdot||]_0^{\theta}(\Delta_n^m,u,q)$. Then, for some number $\epsilon>0$ and a subinterval $I_{r(j)}$ of the set of interval I_r , we have

$$||u_k \Delta_n^m x_{k+s}, z_1, \cdots, z_{n-1}|| \ge \epsilon$$

for all $k \in \mathbb{N}$ and some $s \geq s_0$. Then, from the properties of the Orlicz function, we can write

$$M_k\left(q_k\left(\left|\left|\frac{u_k\Delta_n^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}\right|\right|\right)\right)^{p_k} \ge M_k\left(\frac{\epsilon}{\rho}\right)^{p_k}$$

and consequently by (2.6)

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\frac{\epsilon}{\rho} \right) \right]^{p_k} = 0,$$

which contradicts (iii). Hence (i) must hold.

Theorem 2.8 Let $0 < p_k \le q_k$ for all $k \in \mathbb{N}$ and $\left(\frac{q_k}{p_k}\right)$ be bounded. Then,

$$[c, \mathcal{M}, q, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q).$$

Proof. Let $x \in [c, \mathcal{M}, q, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q)$. Write

$$t_k = \left[M_k \left(q_k \left(||u_k \frac{\Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right) \right]^{q_k}$$

and $\mu_k = \frac{p_k}{q_k}$ for all $k \in \mathbb{N}$. Then $0 < \mu_k \le 1$ for $k \in \mathbb{N}$. Take $0 < \mu < \mu_k$ for $k \in \mathbb{N}$. Define the sequences (u_k) and (v_k) as follows: For $t_k \ge 1$, let $u_k = t_k$ and $v_k = 0$ and for $t_k < 1$, let $u_k = 0$ and $v_k = t_k$. Then clearly for all $k \in \mathbb{N}$, we have

$$t_k = u_k + v_k, \qquad t_k^{\mu_k} = u_k^{\mu_k} + v_k^{\mu_k}$$

Now it follows that $u_k^{\mu_k} \leq u_k \leq t_k$ and $v_k^{\mu_k} \leq v_k^{\mu}$. Therefore,

$$\frac{1}{g_r} \sum_{k \in I_r} t_k^{\mu_k} = \frac{1}{g_r} \sum_{k \in I_r} (u_k^{\mu_k} + v_k^{\mu_k})
\leq \frac{1}{g_r} \sum_{k \in I_r} t_k + \frac{1}{g_r} \sum_{k \in I_r} v_k^{\mu}.$$

Now for each k,

$$\begin{split} \frac{1}{g_r} \sum_{k \in I_r} v_k^{\mu} &= \sum_{k \in I_r} \left(\frac{1}{g_r} v_k\right)^{\mu} \left(\frac{1}{g_r}\right)^{1-\mu} \\ &\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{g_r} v_k\right)^{\mu}\right]^{\frac{1}{\mu}}\right)^{\mu} \left(\sum_{k \in I_r} \left[\left(\frac{1}{g_r}\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}\right)^{1-\mu} \\ &= \left(\frac{1}{g_r} \sum_{k \in I_r} v_k\right)^{\mu} \end{split}$$

and so

$$\frac{1}{g_r} \sum_{k \in I_r} t_k^{\mu_k} \le \frac{1}{g_r} \sum_{k \in I_r} t_k + \left(\frac{1}{g_r} \sum_{k \in I_r} v_k\right)^{\mu}.$$

Hence $x \in [c, \mathcal{M}, p, ||\cdot, \cdot \cdot \cdot, \cdot||]^{\theta}(\Delta_n^m, u, q)$.

Theorem 2.9 (a) If $0 < \inf p_k \le p_k \le 1$ for all $k \in \mathbb{N}$, then

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q).$$

(b) If $1 \le p_k \le \sup p_k < \infty$ for all $k \in \mathbb{N}$. Then

$$[c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q).$$

Proof. (a) Let $x \in [c, \mathcal{M}, p, ||\cdot, \cdot \cdot \cdot, \cdot||]^{\theta}(\Delta_n^m, u, q)$, then

$$\lim_{r\to\infty}\frac{1}{g_r}\sum_{k\in I_r}\left[M_k\Big(q_k\Big(||\frac{u_k\Delta_n^mx_{k+s}-L}{\rho},z_1,\cdots,z_{n-1}||\Big)\right]^{p_k}=0.$$

Since $0 < \inf p_k \le p_k \le 1$. This implies that

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(\left| \left| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]$$

$$\leq \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(\left| \left| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k},$$

therefore, $\lim_{r\to\infty} \frac{1}{g_r} \sum_{k\in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right) \right] = 0$. This shows that $x \in [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta} (\Delta_n^m, u, q)$. Therefore,

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q) \subset [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q).$$

This completes the proof.

(b) Let $p_k \geq 1$ for each k and $\sup p_k < \infty$. Let $x \in [c, p, || \cdot, \cdots, \cdot ||]^{\theta}(\Delta_n^m, u, q)$. Then for each $\epsilon > 0$ there exists a positive integer N such that

$$\lim_{r\to\infty}\frac{1}{g_r}\sum_{k\in I}\left[M_k\Big(q_k\Big(||\frac{u_k\Delta_n^mx_{k+s}-L}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big)\right]^{p_k}=0<1.$$

Since
$$1 \leq p_k \leq \sup p_k < \infty$$
, we have
$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta_n^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k}$$

$$\leq \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(q_k \left(|| \frac{u_k \Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]$$

$$= 0$$

$$< 1.$$

Therefore $x \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta_n^m, u, q)$.

References

- [1] A. Esi, Some new paranormed sequence spaces defined by Orlicz function, International Journal of Science, Environment and Technology, 1 (2012), 49-55.
- [2] A. Esi, Strongly lacunary summable double sequence spaces in n-normed spaces defined by ideal convergence and an Orlicz function, Advanced Modeling and Optimization, 14 (2012), 79-86.
- [3] A. Esi, Strongly almost summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Stud. Univ. Babes-Bolyai Math. 57 (2012), 75-82.

- [4] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow. J. Math., **21** (1995), 377-386.
- [5] A. R. Freedman, J. J. Sember and M. Raphael, *Some Cesaro-type summability spaces*, Proc. London Math. Soc., **37** (1978), 508-520.
- [6] S. Gähler, *Linear 2-normietre Rume*, Math. Nachr., **28** (1965), 1-43.
- [7] H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jpn., 5 (2001), 47-54.
- [8] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., **64** (2001), 137-147.
- [9] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
- [10] M. Güngor and M. Et, Δ^r -strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math., **34** (2003), 1141-1151.
- [11] H. Kizmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
- [12] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 345-355.
- [13] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Mathematica, 80 (1948), 167-190.
- [14] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345-355.
- [15] I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.
- [16] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [17] A. Misiak, n-inner product spaces, Math. Nachr., **140** (1989), 299-319.
- [18] M. Mursaleen, On statistical convergence in random 2-normed spaces, Acta Sci. Math. (szeged), **76** (2010), 101–109.
- [19] M. Mursaleen and A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61 (2011), 933–940.
- [20] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- [21] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musiclak-Orlicz function, Acta Univ. Sapientiae Math., 3 (2011), 97-109.

- [22] K. Raj and S. K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, Cubo, 14 (2012), 167-189.
- [23] K. Raj and S. K. Sharma, Some multiplier sequence spaces defined by a Musielak-Orlicz function in n-normed spaces, New Zealand J. Math., 42 (2012), 45-56.
- [24] E. Savaş, Some sequence spaces defined by Orlicz functions, Arch. Math., 40 (2004), 33–40.
- [25] E. Savaş, Some new double sequence spaces defined by Orlicz function in nnormed space, Journal of Inequalities and Applications, Vol (2011), ID 592840, 1–9
- [26] A. Wilansky, summability through Functional Analysis, North-Holland Math. Stud. 85 (1984).

DOI: 10.7862/rf.2015.10

Kuldip Raj - corresponding author

email: kuldeepraj68@rediffmail.com School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India

Sunil K. Sharma

email: sunilksharma42@gmail.com
Department of mathematics
Model Institute of Engineering & Technology
Kot Bhalwal-181122, J&K, INDIA
Received 19.09.2014