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1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Géhler [6] in the mid
of 1960’s, while that of n-normed spaces one can see in Misiak [17]. Since then, many
others have studied this concept and obtained various results, see Gunawan ([7], [8])
and Gunawan and Mashadi [9] and many others. Let n € N and X be a linear space
over the field K, where K is field of real or complex numbers of dimension d, where

d > n > 2. A real valued function ||-,---,-|| on X™ satisfying the following four
conditions:
1. ||x1, @2, ,zy,|| = 0 if and only if 21,22, - , x, are linearly dependent in X;
2. ||z1, 22, -+ ,xy,|| is invariant under permutation;
3. |laxr, x2, -+ x|l = |a| |21, 22, -, || for any o € K, and
4. ||:E +JI/,(E2, o ,l'nH S ||J],J]2, e ,(EnH + ||xlax21 o 7xn||
is called a n-norm on X, and the pair (X, ||-,---,-||) is called a n-normed space over
the field K.
For example, we may take X = R" being equipped with the Euclidean n-norm
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[|x1, @2, -, z,||g = the volume of the n-dimensional parallelopiped spanned by the
vectors x1, X2, -+ , &, wWhich may be given explicitly by the formula

||.’I,'1,.’II2,' o 7:En||E = |det(xu)|,

where x; = (241, %2, - , Tin) € R™ for each ¢ = 1,2,--- ,n. Let (X,]|,---,-||) be an
n-normed space of dimension d > n > 2 and {a1, a2, -+ ,a,} be linearly independent
set in X. Then the following function ||-,- - ,||oc on X"~ ! defined by

||{E1,$2,~-' axn*1||00 :max{”xhx%"' ;InflaaiH ti= 1725"' an}

defines an (n — 1)-norm on X with respect to {a1,az, - ,an}.
A sequence (z) in a n-normed space (X, ||-,--- ,||) is said to converge to some L € X
if

lim ||zg — Ly 21, -, 2n—1]| =0 for every z1,--+,2z,-1 € X.

k—oo

A sequence (z1) in a n-normed space (X, ||-,--- ,-||) is said to be Cauchy if

lim ||zx — i, 21, ,2n-1]] =0 for every z1, - ,2,-1 € X.

k,i— o0
If every Cauchy sequence in X converges to some L € X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach
space.
An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M(0) =0, M(z) >0 for x > 0 and M(z) — o0 as £ — 0.
Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to define the following
sequence space. Let w be the space of all real or complex sequences x = (xy), then

éM—{wang(%)<oo}

which is called as an Orlicz sequence space. The space ¢j; is a Banach space with the

norm o
|| = inf{p >0 ZM(@) < 1}.
k=1 p

It is shown in [12] that every Orlicz sequence space £; contains a subspace isomorphic
to £p(p > 1). The Ay—condition is equivalent to M (Lx) < kLM (z) for all values of
x >0, and for L > 1. A sequence M = (M) of Orlicz functions is called a Musielak-
Orlicz function see ([16], [20]). A sequence N' = (Ny) is defined by

Ni(v) =sup{|v|ju — (Mg) :u >0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space t g and its subspace
ha are defined as follows

tam = {xEM:IM(c:v) < oo for some c>0},
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hM:{wa:IM(cx)<oo for all c>0},

where Iy is a convex modular defined by

o0

Ta(z) =Y (Mp) (), @ = (z1) € tar.
k=1

We consider tpq equipped with the Luxemburg norm
llz|| = inf{k >0: IM(%) < 1}
or equipped with the Orlicz norm

lz||° = inf{%(l + In(kz)) k> 0},

Let £, ¢ and ¢y denotes the sequence spaces of bounded, convergent and null se-
quences © = (x) respectively. A sequence x = (z3) € fs is said to be almost
convergent if all Banach limits of = (x}) coincide. In [13], it was shown that

. 1 . . .
¢ = {:17 = (zg) : nl;rgo - lekJrS exists, uniformly in s}.
In ([14], [15]) Maddox defined strongly almost convergent sequences. Recall that a
sequence x = (xy) is strongly almost convergent if there is a number L such that
n
nl;rr;o - Z |zkt+s — L] =0, uniformly in s.

k=1
By a lacunary sequence 6 = (i), r = 0,1,2,---, where iyp = 0, we shall mean an
increasing sequence of non-negative integers g, = (i, — ip—1) = 00 (r = 00). The
intervals determined by 6 are denoted by I, = (i,—1,4,] and the ratio i, /i,_; will be
denoted by ¢,. The space of lacunary strongly convergent sequences Ny was defined
by Freedman et. al [5] as follows:

1
Ny = {3: = (x): lim — Z |z — L] =0 for some L}.

The notion of difference sequence spaces was introduced by Kizmaz [11], who studied

the difference sequence spaces lo(A), c(A) and ¢o(A). The notion was further gen-

eralized by Et and Colak [4] by introducing the spaces loo(A™), ¢(A™) and co(A™).

Let m, n be non-negative integers, then for Z = ¢, ¢y and [, we have sequence spaces
Z(AM) ={x = (z) €ew: (Alxy) € Z}

for Z = c,co and Iy where ATz = (ATxy) = (AT oy, — Am1zy) and APz = 2
for all k € N, which is equivalent to the following binomial representation

A?CL‘;@ = Z(—l)v ( ZL ) Th+nv-

v=0
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Taking n = 1, we get the spaces loo(A™), ¢(A™) and co(A™) studied by Et and
Colak [4]. Taking m = 1, n = 1, we get the spaces loo(A), ¢(A) and ¢o(A) studied
by Kizmaz [11]. Let X be a linear metric space. A function p : X — R is called
paranorm, if

1. p(x) >0 for all z € X,
2. p(—z) =p(x) for all x € X,
3. plx+y) <p(z)+ply) for all z,y € X,

4. if (\,) is a sequence of scalars with A, = A as n — oo and (z,) is a sequence
of vectors with p(z, —x) — 0 as n — oo, then p(Apz, — Az) = 0 asn — oco.

A paranorm p for which p(z) = 0 implies 2 = 0 is called total paranorm and the pair
(X,p) is called a total paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see [26], Theorem 10.4.2, pp.
183). For more details about sequence spaces see ([1], [2], [3], [18], [19], [21], [22], [23],
[24], [25]) and references therein.

Let M be an Orlicz function and p = (pi) be any sequence of strictly positive real
numbers. Giingor and Et [10] defined the following sequence spaces:

n

[e, M, p)(A™) = {:z: = (ax) + lim % 3 {M(W)rk —0,

uniformly in s, for some p >0 and L > 0},

n

[e, M, plo(A™) = {x = (x): lim 1 Z [M(M)rk =0,

n—oo n P

uniformly in s, for some p >0 },

m BN |Amxk+5| Pr
[e, M, ploo (A™) = {a: = (xp) : sup — Z [M(i)} < oo for some p > O}.
ms P
Let M = (M}) be a Musielak-Orlicz function and X be a seminormed space, semi-
normed by ¢ = (gx). Let p = (px) be any bounded sequence of positive real numbers
and u = (ux) be any sequence of strictly positive real numbers. In this paper we
define the following sequence spaces:

[caMupv ||7 ' 7|| ]Q(A?,’U,,Q) =

1 A™ s — L P
{3: = (zx) €Ewn—X): lim — Z [Mk(qk(||M,zl,u~ ,zn,1||))} g 0,
r—00 g vyl p

uniformly in s, z1,---,2p,—1 € X for some L and p > O},
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e Mop I I TR(AT u,q) =

{:v = (z) e win —X) : Tlir&ilcezh [Mk(%(ﬂ%,zl,“- 72n_1||))rk =0,
uniformly in s, z1,---,2p—1 € X for some p >0 },

[ Mp, Il [ (AT u,q) =

(w0 s S oo (252 )" <

r,s 9r k=1 14
uniformly in s, z1,-+-,2zp,—1 € X for some p > 0}.
When, M(z) = z, we get
[Cvpa”'a"' 7'||]9(Anmau7Q):
. 1 ukAﬁxk S—L Pk
{x = (zx) ew(n—X): lim — Z (qk(||—+,21,--- ,zn_1||>) =0,
T et p
uniformly in s, z1,--+,2,-1 € X for some L and p > O},
[C,p,”-,--- 7'||]S(Anmvu7Q):
. 1 A?.’L’k s Pk
{:v = (zx) €w(n — X) : lim — Z (qk(||uk7+,zl,--- ,zn_1||)) =0,
T er P
uniformly in 8,21, ,2,-1 € X for some p >0 },
[C,p,”-,--- 7'||]20(A?7U7Q):
1 & ULAT Tt s P
{3: = (z) € wln — X) : sup—z (qk(||u,zl,~-~ ,zn,1||)) < 00,
rs 9ri 1Y
21, ,2n—1 € X for some p>0}.
If we take pr, = 1 for all k, then we get
[CvMaH'a"' 7'||]9(Anmau7Q):
. 1 ukAnm:Z?k s — L
{w = (zk) € w(n—X): Tlggog— > {Mk(%(||+,zl,--- 7Zn—l||))j| =0,

uniformly in s, 21, ,2,—1 € X for some L and p > O},
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Lo Ml [T JR(AT u,q) =
{x: (xg) € wn — X) : lim Ll Z [Mk(qk(H%,zl,--- ,zn_1||))} =0,
"I T P
uniformly in s, z1,-+-,2p—1 € X for some p >0 },
[es Mo (AT u,g) =

n

1 UL AT Tt s
{a: = (zg) Ewln — X): supg— Z {Mk(qk(ﬂ%,zl,--- ,zn,1||))} < 00,
T8 Tkzl

21, ,2n—1 € X for some p>0}.

The following inequality will be used throughout the paper. If 0 < pp < suppr = H,
D = max(1,27~1) then

|ak + b ["* < Dfag["* + [bk["*} (1.1)
for all k and ay, b, € C. Also |a|P* < max(1, |a|) for all a € C.
The main aim of this paper is to study some seminormed difference sequence spaces
defined by a Musielak-Orlicz function over n-normed space. We also make an effort to

study some topological properties and prove some inclusion relations between these
spaces.

2  Main Results

Theorem 2.1 Let M = (My) be a Musielak-Orlicz function, p = (pr) be a

bounded sequence of positive real numbers and u = (ur) be any sequence of
strictly positive real numbers.  Then the spaces [c, M,p,||- -+ ,-||]°(A™, u,q),
[e, Myp, || 5| 18(A™ u,q) and [ ¢, M,p, ||, -+ ,-|| 1% (A™ u,q) are linear over
the field of complex numbers C.

Proof. Let x = (xx), y = (y)€[ ¢, M, p, ||, || 1§(A™,u,q) and o, B € C. Then

there exists positive numbers p; and p2 such that

1 AT gy s P . .
lim — Z [Mk(qk(ﬂm,zl,--- ,zn_1||))} " 0, uniformly in s,
P1

T—>00 g,r kel
s

and

1 A P
lim — Z [Mk(qk(ﬂw,zl,-u ,zn,1||))} ’ =0, uniformly in s.
T2 gr rel P2
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Let p3 = max(2|alp1,2|B|p2). Since M = (My,) is non-decreasing convex function, by
using inequality (1.1), we have

L5 [ty (qu (Jeitlommes + Bm) ]

" kel P3
1 1 UL AT (Tt s Pk
<ply" ﬁ{Mk(qk(vazh... znaall))]
9r kel, P1
1 1 up A" s Pk
ply ﬁ{Mk(qk(HM,zh... znaall))]
9r kel, P2
1 UL AT (Trets Pk
<ply" [Mk(qk(uw,zh... znaall))]
9r kel, P1
1 up A" s Pk
ply {Mk(qk(ﬂw,zl,.. znaall))]
9r kel, P1
— 0 as r —> oo, uniformly in s.
ThUS, we have ax +ﬁy € [caMupv ||7 T 7|| ]8(A:zn7u7Q)
Hence [ ¢, M,p, ||+ ,-|| |8(A™ u,q) is a linear space. Similarly, we can prove
that [CvMapv ||7 ! a|| ]H(A:Lnauvtﬂ and
[caMupv ||7 T 7|| ]go(Axa/UHQ) are linear spaces. &

Theorem 2.2 For any Musielak-Orlicz function M = (My), p = (px) be a bounded
sequence of positive real numbers and u = (u) be any sequence of strictly positive
real numbers, the space [ c, M,p,||-,-- || 1§(A™, u,q) is a topological linear space
paranormed by

g9(z) =inf{P% : (i > {Mk(%(H%puﬂ’zl’m ’Z"—l”))rk)

gr kel

=)=

< 1,T,SEN},

where K = max(1,supy, pr < 00).
Proof. Clearly g(z) > 0 for x = (xx) € [ ¢, M, ||, -+ || |§(A™, u, q). Since My(0) =
0, we get g(0) = 0. Again, if g(z) = 0, then

inf{p% : (gi Z {Mk(qk(H%,zl,-“ 7271_1”))}1%)% <l,rse€ N} =0.

" kel,

This implies that for a given € > 0, there exists some p.(0 < p. < €) such that

1

(i 3 bl ))[) 1

" kel

Thus
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] YN S S

keI,

= (_ > [Mk(Qk(”A Z’“*S 2, ’Z’H”))rk)%

gT’ kEI €
< 1

for each r and s. Suppose that xj # 0 for each k € N. This implies that A zp4s # 0,
for each k,s € N. Let ¢ — 0, then q;%”m

I IPREE ,zn,1||) — o0. It follows
that
1 ukAﬁxk s Pk
(_Z [Mk(Qk(H 6 as ;Zlv"'vzn71||)):| ) — 00,
gr k€I,

==

which is a contradiction. Therefore, A'xy1s = 0 for each k and s and thus xx =0
for each k € N. Let p; > 0 and p2 > 0 be such that

(3 5 (25 )] )

" kel,

==

and

(— Z [Mk(Qk(”% 21, ,zn,1||))rk)? <1

gr kel,.

for each r and s. Let p = p1 + p2. Then, by Minkowski’s inequality, we have

1

(o 3 [ (o (et ) o ))])

" kel
(3 [ ) )

kel,.

bl (g (1B ) )Y
< (2) (2 3 [ (R )]

" ke I,
() G (a1 )] )

<1

Since p's are non-negative, so we have
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g(z+y)
. /1 AT (2ot , *
:jnf{pp? (_ Z [Mk(qk(Huk W (Trrs + Yt )721,”' 72’n71||))rk)K < 1,T,S€N},
9r p
pr 1 AT s Pr\
<int (ol (>3 [ (qk(nwnpi(lm)%... aall))]) " < 1rsen

o
m
~
3

==

—l—inf{p;%: {Mk(qk(H%,zl,--- ,zn_1||))rk) Sl,r,seN}.

~
=

o
m
~
3

Therefore,
9(z +y) < g(@) +9(y).

Finally, we prove that the scalar multiplication is continuous. Let A be any complex
number. By definition,

x|

g(Ax) = inf {p% : (gi Z {Mk(qk(H%,zl,--- ,zn_1||))}pk) <l,rse€ N}.
" kel
Then
g() = inf {(INI1) % (gi 3 {Mk(qk(H%,zl’... ,zn,1||))]p")% SR
" kel

where t = ﬁ. Since |A[Pr < max(1, |A[F"PPr), we have
g(Ax) < max(1,|A[S"PPr)

L

inf{tpfr : (gi Z {Mk(qk(H%,zl,--- ,zn_1||))}pk>K <1,r,s€ N}.

" kel,

So, the fact that scalar multiplication is continuous follows from the above inequality.

This completes the proof of the theorem.m

Theorem 2.3 Let M = (My,) be a Musielak-Orlicz function. If sup[My(x)]P* < oo for
k

allﬁxedw >0, then[cuMapu ||7 e 7|| ]8(A:zn7u7Q) C [Cqupu ||7 e 7|| ]go(A:znuua(J)
Proof. Let x = (z) € [ ¢, M,p, ||, -+, || ]§(A™, u, q). There exists some positive p;
such that
1 FANKL TR p
lim — Z [Mk(qk(||ﬂ,zl,~-~ ,zn,1||))} o 0, uniformly in s.
=00 gr rel P1

Define p = 2p;. Since M = (M},) is non-decreasing and convex, by using inequal-
ity(1.1), we have
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1 U AT Pk
sup— [Mk(qk(nuvzh... 7Zn71||))}

r,8 g’l‘ ke] p
1 1 U Az s — L Pk
< Dsup — Z [—Mk(qk(”%’%... 7Zn71||))}
ms 9ropeT o 1
1 1 L Pk
+Dsup— Z |:_Mk(qk(||_7zl7 7271—1”))}
7,8 grk Pk P1
EI’V‘
1 ukA?xk s_L Pk
< Dsup — Z {Mk(qk(H—Jr,Zl,'“ 72n—1||):|
r,s 9r kel P1
1 Pk
+ Dsup — Z {Mk(Qk(” ) 21, ,%—1“)”
rs 9T
< 0.
Hence z = (z) € [ ¢, M,p, ||+ || 1% (A" u, q). m

Theorem 2.4 If0 < infpr, = h < pi, <suppr = H < 0o and M = (My), M’ = (M)
be two Musielak-Orlicz functions satisfying As— condition, then we have

(Z.)[C,Ml,p,H',"' 5|| ]g(AzlaUHQ) C [QMOM/,%HH"' 7|| ]S(A:anuaq);
(ii)[cvM/vl)’H""' 7|| ]Q(AnmJL,Q) - [QMOM/,%HH"' a|| ]H(A;n,u7q>,
(ZZZ)[C5M/7P5||5 5|| ]ZO(A;,”?u)q) C [C,MOM/,p,H-,-" 7|| ]go(A:Lnau7Q)
Proof. Let = = (z1) € [e, M', p, ||-,- -+ ,-[|](A™, u, q). Then we have
. 1 , Al xpps — L PE
I ] (T )

uniformly in s for some L.

Let € > 0 and choose § with 0 < § < 1 such that M (t) < e for 0 <t <. Let

AlMxgrs — L
ykZ,S:M]:;(qk;(H—Uk n Tkt 21, ,zn_1||)> for all k,s € N.
p

We can write

1 1 1
— Y M) = — D Me(ye )P+ — > Mgk
gr kel, gr k€l yr, s<s " k€l gk s>s

Since M = (M},) satisfies Ag-condition, we have

LS M) < O S (M)

9r

k€L yk,s < gr k€L ,yk,s <
1
S[Mk(Q)]Hg— > My (2.1)

ke]rvyk,sg‘;



Some seminormed difference sequence spaces ... 125

For y s > 0

Yk,s yks
=<1

5 St

Since M = (M},) is non-decreasing and convex, it follows that

yk,s <

M, (yks)<Mk(1+y1:$s> < %Mk( )+ M (2y§5>

Since (M) satisfies Ag-condition, we can write

1 S 1 S S
Milye.s) < §Tyk’ Mi(2) + §Ty’“’ Mip(2) = TZ52 01 (2).

) ) )
Hence,
g Y Do mex(L(EEDD LT o e2)
K€Ly yn,s>5 k€T, yp >0
from equations (2.1) and (2.2), we have
z=(zx) € [, Mo M p, || [I§(AT u, ).
This completes the proof of (i). Similarly, we can prove that
[e, Mp, 1y IR AT uyq) € [ Mo M1 [T TR (AT u, )
and
[e, M [ I (AT s g) € [e, Mo MY p, (|- [T (AT u, ).
|

Corollary 2.5 If0 < infpy, = h < pr. < suppy = H < 0o and M = (M},) be Musielak-
Orlicz function satisfying Aa- condition, then we have

[CvpaH'a"' 7|| ]g(A:znvuaq) - [Canpa”'a"' a|| ]8(A?7uaq)

and

[C,p,“-,--- 7|| ]go(Anm7u7Q) C [Cvapvn'v"' 7|| ]go(Anm7u7Q)'

Proof. Taking M’(z) = x in the above theorem, we get the required result.m

Theorem 2.6 If M = (M) be the Musielak-Orlicz function, then the following state-
ments are equivalent:

(Z) [C5p7||'7"' 5|| ]%o(Aﬁvuaq) - [CvMapv”'v"' a|| ]go(A:znvuaq)a
(Z’L) [Cvp5||'5"' 7|| ]O(Axvuaq) - [Canpa”'a"' a|| ]OO(AZL,’LL,Q),

fiii) sup — S [Me( L) < 00 (1,0 > 0).
"I kel
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Proof. (i) = (ii) The proof is obvious in view of the fact that

[Cvpa ||a o 7|| ]S(AT,U,Q) C [Capv ||7 ! a|| ]Zo(Aﬁvuaq)
(11) :>(111) Let [Capv”v a|| ]8(A:Lnau7Q) C [CvMapv”v a|| ]ZO(A:anuaq) Sup_
pose that (iii) does not hold. Then for some ¢, p > 0
1 top
sup — »  [Mi(=)]"* = 0o
r Jr kel 14

and therefore we can find a subinterval I,.(;) of the set of interval I,. such that

TN
Lgr () Z {Mk(Tﬂ >3, j=12, (2.3)
]CEIT(]')

Define the sequence = = (xj) by

1
m _ J 5 ke Ir(j)
ATirs = { 0, k¢l forall seN.
Then z = (1) € [e,p, ||, -+, |[]§(A™, u, ¢) but by equation(2.3),
= (xx) € [c, Myp, ||+ || 1% (A™ u, ), which contradicts (ii). Hence (iii) must
hold.
(iii) = (i) Let (iii) hold and = = (xx) € [¢,p, ||+ -+ , || 1% (A™, u, q). Suppose that
T = (:Ek) ¢ [cvMupv ||7 T 7|| ]&(Axuua(p Then
1 A"y Pk
sup—z [Mk(Hi]H_,zl,---,zn_lH)] = 0. (2.4)
ms 9roper, P

Let t = qi (||ukAﬁxk+s, 21,0 ,zn,1||) for each k and fixed s, then by equations(2.4)

aw L 5 i (£)] =

r9r el P

which contradicts (iii). Hence (i) must hold.m

Theorem 2.7 Let 1 < p;, < suppp < 00 and M = (My) be a Musielak Orlicz func-
tion. Then the following statements are equivalent:

(i) [ M- ] ]SG(Az%u,q) Clepl- wll]g(eAT,u,Q),
(ZZ) [Ca'/\ilvpa ||a ,|t| ]OgoAznvuaq) C [C,p, ||a 7|| ]oo(A:Lnau7Q>a
k
(iii) inf — Y | My (= >0 (t,p>0).
e

Proof. (i) = (ii) It is trivial.
(i) = (iii) Let (ii) hold. Suppose that (iii) does not hold. Then

nf L 3 [Mk(ﬁ)rk —0 (t,p>0),

T
gr kel
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so we can find a subinterval I,.(;) of the set of interval I,. such that

o X P < i1 2

g"(j) ke[r(j) P

Define the sequence x = (xj) by

m _ j7 ke Ir(j)
ATBhrs = { 0, k¢l foral seN.
Thus by equation(2.5), z = (1) € [ ¢, M, p, ||, ,-|[J§(A™, u, q), hence
v =(z) € [e,p, || || 1% (A™, u, q), which contradicts (ii). Hence (iii) must hold.
(iii) = (i) Let (iii) hold and suppose that = (zx) € [ ¢, M, p, ||, -+, || |$(A™, u, q),
i.e,
o1 URLAT Thoy s Pk
lim —Z [Mk(qk(ﬂw,zl,--- ,zn_1||>)} =0, (2.6)
T er P

uniformly in s, for some p >0 .

Again, suppose that = = (zx) & [ ¢,p, ||, -+ || §(A™, u, ). Then, for some num-
ber € > 0 and a subinterval I,.(;) of the set of interval I,., we have

Nup AN Thys, 21, 5 2n—1|| > €

for all £k € N and some s > sg. Then, from the properties of the Orlicz function, we

can write
ur Az Pk €\ Pk
M (o (=25 e anal])) ™ 2 04 ()

and consequently by (2.6)

which contradicts (iii). Hence (i) must hold.m

Theorem 2.8 Let 0 < pi, < qi for all k € N and (Z_Z) be bounded. Then,

[CuMaqu ||7 7|| ]G(Anm7u7Q) - [C,M,p, ||7 7|| ]H(A?7U7Q)'

Proof. Let x € [ ¢, M, q,||-,-++ || 1°(A™, u, q). Write

Al — L 9k
b= (M s (=2 )



128 K. Raj, S. K. Sharma

anduk:’q’—:foraﬂkeN. Then 0 < pur <1 for ke N.Take0 < pt < pg for k€ N.

Define the sequences (ux) and (vg) as follows: For ¢, > 1, let up = ¢ and v, = 0 and
for t; < 1, let uxp = 0 and v = tr. Then clearly for all £ € N, we have

b = ug + vg, tZkZUZ’“+U§k

Now it follows that u}* < wuy <t and v,* < v). Therefore,

i Zt;:k _ i Z(ugk +v;:k)

g

" kel, " kel,
1 1 L
N DI
gr kel " kel,

Now for each k,

=3 () ()

(E LT ()

and so )
n
Lyt S (tyw)
Ir rer gr kel, " kel
Hence x € [caMupv ||7 . 7|| ]O(A:znuu7Q) u

Theorem 2.9 (a) If 0 < infpr, < pr, <1 for all k € N, then
[Cvapvn'v"' 7|| ]G(Aﬁaua‘J) C [07M7||'7"' 7|| ]O(A?VUWJ)'
(b) If 1 < pp <suppp < oo forall k € N. Then

[Can”'v"' a|| ]Q(A?#,‘J) C [CvMapv”'v"' a|| ]O(A?aUﬂ(ﬁ'

Proof. (a) Let z € [C,M,p, ||a e 7|| ]Q(A:anuaq)v then

.1 upAMxpys — L Pk
N O (e )
gr kel P
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Since 0 < inf pp < pr < 1. This implies that

o1 U A xpps — L
O S| TN EE N )))
"k

p
el,
. 1 UkA:Inkars — L Pk
< lim _Z |:Mk(qk0|—azlv"'7Zn*1||)):| )
"I ke, p

1 Am s — L
therefore, lim — Z [Mk (qk(HM,zl,w- ,zn,1||))} = 0. This shows

o0 gr kel, P
that € [ ¢, M, ||-,-++ || ]?(A™, u, q)- Therefore,
[Cvapvn'v"' 7|| ]G(Aﬁaua‘J) C [07M7||'7"' 7|| ]O(A?VUWJ)'

This completes the proof.

(b) Let py > 1for each k and suppy < oo. Let = € [ ¢, p, ||, , || ]°(A™, u, q). Then
for each € > 0 there exists a positive integer N such that

1 A™ s — L P
lim — 3 [Mk(Qk(”Mm’fl;'” ,anlll))} o<1
Ir yel, P

Since 1 < p, < sup pg < 00, we have

. 1 ukA?:vk s — L Pk
it 3 [ )
gr kel, P

"o gr kel, P
=0
<1

Therefore x € [CuMapu ||7 e 7|| ]G(A:zn7u7Q) u
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