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(B, ∥ . ∥) be a commutative unital Banach algebra over the scalar field
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the analytic α-Lipschitz B-valued operators on X and denote the Banach
algebra of all these operators by LipαA(X,B). When B = F, we write
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1. Introduction

Throughout this paper, let (X, d) be a compact metric space in C, (B, ∥ . ∥) be a
commutative unital Banach algebra over the scalar field F(= R or C) with unit e,
C(X,B) be the set of all B-valued continuous operators on X, and also α ∈ R with
0 < α ≤ 1.

The dual space of B is the vector space B∗ whose elements are the continuous linear
functionals on B. The set of all multiplicative functionals on B is called spectrum of
B; we denote it by σ(B). Suppose that throughout this article, Λ ∈ σ(B) is arbitrary
and fixed. Since σ(B) is a subset of the closed unit ball of B∗, ∥ Λ ∥ is bounded,
where

∥ Λ ∥= sup{ | Λx | : x ∈ B , ∥ x ∥≤ 1 }.

When B = F, take Λ as the identity function Λx = x.



182 A. Shokri

Consider the set Y as follows

Y := {(x, y) : x, y ∈ X , x ̸= y}.

For an operator f : X → B and any (x, y) ∈ Y define

Lα
f (x, y) :=

∣∣∣(Λof)(x)− (
Λof

)
(y)

∣∣∣
dα(x, y)

,

where dα(x, y) =
(
d(x, y)

)α
and 0 < α ≤ 1. Now define

pα(f) := sup
x ̸=y

Lα
f (x, y) , 0 < α ≤ 1,

which is called the Lipschitz constant of f . Also for 0 < α ≤ 1 define

Lipα(X,B) := {f ∈ C(X,B) : pα(f) < +∞},

and for 0 < α < 1 define

lipα(X,B) := {f ∈ Lipα(X,B) : lim
d(x,y)→0

Lα
f (x, y) = 0}.

The elements of Lipα(X,B) and lipα(X,B) are called big and little α-Lipschitz B-
valued operators, respectively.

Now, for each λ ∈ F, x ∈ X and f, g ∈ C(X,B) define(
f + g

)
(x) := f(x) + g(x) ,

(
λf

)
(x) := λf(x) ,

and the uniform norm ∥ . ∥∞ on C(X,B) by

∥ f ∥∞:= sup
x∈X

∥ f(x) ∥ ; f ∈ C(X,B).

Also for any f ∈ Lipα(X,B) define

∥ f ∥α:= pα(f)+ ∥ f ∥∞ .

It is easy to see that
(
C(X,B), ∥ . ∥∞

)
becomes a Banach algebra over F.

Cao, Zhang and Xu in [6] proved that
(
Lipα(X,B), ∥ . ∥α

)
is a Banach space

over F and
(
lipα(X,B), ∥ . ∥α

)
is a closed linear subspace of

(
Lipα(X,B), ∥ . ∥α

)
when B is a Banach space. We also studied some of the properties of these algebras
in [14-17] when B is a commutative unital Banach algebra.

Note that for α = 1 and B = F, the space Lip1(X,F) consisting of all Lipschitz
functions fromX into F(= R or C) has a series of interesting and important properties,
which has been studied by many mathematicians, including the first of them Sherbert
[13]. In [7, 18] some properties of Lipschitz scalar-valued functions are mentioned.

Let D be an open subset of X. An operator f of D into B is said to be analytic
on D if, for every continuous linear functional ϕ ∈ B∗, the scalar-valued function ϕof
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is analytic on D in the usual sense. Note that we do not require D to be connected.
For a full discussion of analytic complex-valued and vector-valued functions, see [2,
7]. The algebra of all continuous B-valued operators on X whose analytic in interior
X is denoted by A(X,B). We write A(X) instead of A(X,F) (F = R or C). Some of
the properties of these algebras have been studied by certain mathematicians, see [1,
3-5, 8-11].

Finally, in this article, we introduce the analytic α-Lipschitz B-valued operator
algebras LipαA(X,B) and we characterize their characters, also we study the relation-
ship between of LipαA(X,B) and B. We prove the main results of the article in several
theorems.

2. Lip-analytic Operators

In this section, we introduce the analytic α-Lipschitz vector-valued operator alge-
bras LipαA(X,B), and we study some of their properties.

We write C(X) and Lipα(X) instead of C(X,F) and Lipα(X,F) respectively. By
the Stone-Weierstrass theorem, we have

Theorem 2.1. [7]. A(X) is uniformly dense in C(X).

It is obvious that A(X,B) is a subalgebra of C(X,B). We have

Theorem 2.2. A(X,B) is uniformly dense in C(X,B).

Proof. Let ϵ > 0 and f ∈ C(X,B) be arbitrary. We show that there exists g ∈
A(X,B) such that ∥ f − g ∥∞< ϵ. Since f ∈ C(X,B), Λof ∈ C(X). Then by
Theorem 2.1, there is h ∈ A(X) such that ∥ Λof − h ∥∞< ϵ. So

sup
x∈X

∣∣∣(Λof)(x)− h(x)
∣∣∣ < ϵ.

Since Λ(e) = 1, h(x) = Λ(h(x)e) for all x ∈ X. Then

sup
x∈X

∣∣∣Λ(f(x))− Λ(h(x)e)
∣∣∣ < ϵ.

Hence
sup
x∈X

∣∣∣Λ((f − h.e)(x)
)∣∣∣ < ϵ.

Since Λ ∈ σ(B) is arbitrary, supx∈X ∥ (f −h.e)(x) ∥< ϵ. Thus ∥ f −h.e ∥∞< ϵ. Now,
take g := h.e. Since h ∈ A(X) and e ∈ B , g ∈ A(X,B). Therefore we conclude that
∥ f − g ∥< ϵ where g ∈ A(X,B).

We have the similar Theorem 2.1 for the algebra of Lipschitz scalar-valued func-
tions:

Theorem 2.3. [18]. Lipα(X) is uniformly dense in C(X).
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Theorem 2.4. Lipα(X,B) is uniformly dense in C(X,B).

Proof. Let ϵ > 0 and f ∈ C(X,B) be arbitrary. We show that there exists h ∈
Lipα(X,B) such that ∥ h − f ∥∞< ϵ. Since f ∈ C(X,B), Λof ∈ C(X). So by
Theorem 2.3, there exists g ∈ Lipα(X) such that ∥ g − Λof ∥∞< ϵ. Define

η : C → B

η(λ) := λe.

Since g is continuous, ηog is continuous. Also

pα(ηog) = sup
x ̸=y

Lα
ηog(x, y)

= sup
x ̸=y

∥ (ηog)(x)− (ηog)(y) ∥
dα(x, y)

= sup
x ̸=y

∥ g(x)e− g(y)e ∥
dα(x, y)

(∥ e ∥= 1)

≤ pα(g) <∞.

So ηog ∈ Lipα(X,B). Set h := ηog. Now we show that ∥ h−f ∥∞< ϵ. Since Λ(e) = 1,
for all x ∈ X we have∣∣Λ(g(x)e− f(x)

)∣∣ =
∣∣g(x)− (Λof)(x)

∣∣
≤ ∥ g − Λof ∥∞
< ϵ.

This implies that ∣∣Λ(ηog − f
)
(x)

∣∣ < ϵ , x ∈ X.

Since Λ ∈ σ(B) is arbitrary, ∥ (ηog − f)(x) ∥< ϵ for all x ∈ X. Consequently,
∥ ηog − f ∥∞< ϵ or ∥ h− f ∥∞< ϵ. This completes the proof.

Corollary 2.5. By using Theorems 2.2 and 2.4, each element of A(X,B) can
be approximated by elements of Lipα(X,B) with sup-norm. Also each element of
Lipα(X,B) can be approximated by elements of A(X,B) with sup-norm.

Definition 2.6. Let D be an open subset of X. An operator f of D into B is said
to be Lip-analytic on D if f ∈ Lipα(X,B) ∩A(X,B).

The algebra of all Lip-analytic B-valued operators on X whose analytic in interior
X is denoted by LipαA(X,B). When B = F, we write LipαA(X) instead of LipαA(X,B).

By Theorems 2.2 and 2.4, we can prove that:

Theorem 2.7. LipαA(X,B) is uniformly dense in C(X,B).
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Let E1 and E2 be linear spaces. From [12], a tensor product of E1 and E2 is a
pair (T, τ), where T is a linear space and τ : E1 × E2 → T is a bilinear map with
the following (universal) property: For each linear space F and for each bilinear map
V : E1 × E2 → F , there is a unique linear map U : T → F such that V = Uoτ.
We shall also use the standard notation for tensor products, we write E1 ⊗ E2 for T
and x1⊗x2 = τ(x1, x2) for x1 ∈ E1 and x2 ∈ E2. If Z ∈ E1⊗E2, then there is m ∈ N,
and for each j = 1, 2 there are x

(1)
j , ..., x

(m)
j ∈ Ej such that Z =

∑m
k=1 x

(k)
1 ⊗ x

(k)
2 .

Let E1 and E2 be Banach spaces with dual spaces E∗
1 and E∗

2 . Then we define
for Z ∈ E1 ⊗ E2

∥ Z ∥ϵ= sup
{∣∣⟨Z, ϕ1 ⊗ ϕ2⟩

∣∣ : ϕj ∈ N1[0, E
∗
j ] , j = 1, 2

}
,

where

Z =

m∑
k=1

x
(k)
1 ⊗ x

(k)
2 ;

(
m ∈ N, x(k)j ∈ Ej , j = 1, 2, 1 ≤ k ≤ m

)
,

and

⟨ Z, ϕ1 ⊗ ϕ2 ⟩ = ⟨
m∑

k=1

x
(k)
1 ⊗ x

(k)
2 , ϕ1 ⊗ ϕ2 ⟩

= (ϕ1 ⊗ ϕ2)
( m∑

k=1

x
(k)
1 ⊗ x

(k)
2

)
=

m∑
k=1

(ϕ1 ⊗ ϕ2)
(
x
(k)
1 ⊗ x

(k)
2

)
=

m∑
k=1

ϕ1
(
x
(k)
1

)
ϕ2

(
x
(k)
2

)
,

and N1[0, E
∗
j ] is closed ball in E∗

j with radius 1 centered at 0 . We call ∥ . ∥ϵ the
injective norm on E1 ⊗ E2.

Let (E1, ∥ . ∥1) and (E2, ∥ . ∥2) be Banach spaces. Then their injective tensor
product E1⊗̌E2 is the completion of E1 ⊗ E2 with respect to ∥ . ∥ϵ. For every
Z ∈ E1⊗̌E2 , we have

∥ Z ∥ϵ= sup
{
∥
(
id⊗ ϕ

)
(Z) ∥1 : ϕ ∈ N1[0, E

∗
2 ]
}
,

where (
id⊗ ϕ

)
(a⊗ b) = aϕ(b) ; (a ∈ E1 , b ∈ E2).

Definition 2.8. Let E1 and E2 be Banach spaces. A norm ∥ . ∥ on E1 ⊗E2 is called
a cross norm if

∥ x1 ⊗ x2 ∥=∥ x1 ∥∥ x2 ∥ (x1 ∈ E1 , x2 ∈ E2).

Proposition 2.9. [12]. Let E1 and E2 be Banach spaces. Then ∥ . ∥ϵ is a cross norm
on E1 ⊗ E2.
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3. The Main Results

In this section, we present the main results of the article.

Theorem 3.1. LipαA(X,B) is isometrically isomorphic to LipαA(X)⊗̌B.

Proof. It is straightforward to prove that the mapping

LipαA(X)×B → LipαA(X,B), (f, b) 7−→ fb (3.1)

is bilinear. So from the defining property of the algebraic tensor product LipαA(X)⊗B,
it follows that (1) extends to a linear map

S : LipαA(X)⊗B −→ LipαA(X,B)

S(f ⊗ b) := fb ,

where
(fb)(x) := f(x)b ; (x ∈ X).

Then

∥ S(f ⊗ b) ∥α = ∥ fb ∥α = ∥ fb ∥∞ +pα(fb)

= ∥ f ∥∞∥ b ∥ +pα(f) ∥ b ∥
= (∥ f ∥∞ +pα(f)) ∥ b ∥
= ∥ f ∥α∥ b ∥
= ∥ f ⊗ b ∥ϵ .

Therefore S is an isometry and thus injective with closed range. It remains to be
shows that it has dense range as well.

Let f ∈ LipαA(X,B) and ϵ > 0. Being the continuous image of a compact space,
K := f(X) ⊂ B is compact. We may thus find b1, ..., bn ∈ B such that K ⊂
∪n
i=1N(bi, ϵ), where N(bi, ϵ) is a neighborhood with radius ϵ centered at bi. Let Uj :=

f−1
(
N(bj , ϵ)

)
for j = 1, ..., n. Choose f1, ..., fn ∈ LipαA(X,B) such that supp(fj) ⊂ Uj

for j = 1 , ..., n, and Λo(
∑n

i=1 fi) = 1. Then for every x ∈ X we have

∥
(
f −

n∑
i=1

S(Λofi ⊗ bi)
)
(x) ∥ = ∥

(
f −

n∑
i=1

(Λofi)bi
)
(x) ∥

= ∥ f(x)−
n∑

i=1

(Λofi)(x)bi ∥

= ∥ f(x)
(
Λo(

n∑
i=1

fi)
)
(x)−

n∑
i=1

(Λofi)(x)bi ∥

= ∥ f(x)
n∑

i=1

(Λofi)(x)−
n∑

i=1

(Λofi)(x)bi ∥
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= ∥
n∑

i=1

(Λofi)(x)
(
f(x)− bi

)
∥

≤
n∑

i=1

| (Λofi)(x) |∥ f(x)− bi ∥ .

It easy to see that the right hand side of the above relation is less than ϵ. So we
conclude that RS = LipαA(X,B). This completes the proof.

With an argument similar to the proof of Theorem 3.1, we can prove that:

Theorem 3.2. A(X,B) is isometrically isomorphic to A(X)⊗̌B.

Define the canonical embedding

j : LipαA(X) → LipαA(X,B)

j(h) := h⊗ e ,

such that
(h⊗ e)(x) := h(x)e ; x ∈ X.

By Theorem 3.1, the map j is well defined. Let χ be a arbitrary and fixed character
on LipαA(X,B). Then there is z ∈ X such that χoj is the evaluation at z, indeed
χoj = δz where δz(f) = f(z).

Define φ(ω) := ω − z, (ω ∈ X). It is clear that φ ∈ A(X), and we have

pα(φ) = sup
x ̸=y

| φ(x)− φ(y) |
| x− y |α

= sup
x ̸=y

| (x− z)− (y − z) |
| x− y |α

= sup
x ̸=y

| x− y |1−α<∞.

So φ ∈ Lipα(X), and consequently φ ∈ LipαA(X).

Now consider
I := {f ∈ LipαA(X,B) : f(z) = 0}.

It is obvious that I is nonempty and an ideal in LipαA(X,B).

Theorem 3.3. I is contained in the kernel of χ.

Proof. Let f ∈ I be arbitrary. Then f ∈ A(X,B). So f has a Taylor series expansion

f(ω) = Σ∞
n=1

f(n)(z)
n! (ω − z)n around z. Define

g(ω) :=


f(ω)
ω−z ; ω ̸= z ,

f
′
(z) ; ω = z.
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It is clear that Λog is analytic in the interior of X, so g ∈ A(X,B). For ω = z, it is
obvious that g ∈ LipαA(X,B), and for ω ̸= z we have

f(ω) = (ω − z)g(ω) = φ(ω)g(ω).

It can be easily proved that g ∈ LipαA(X,B). Then for every ω ∈ X with ω ̸= z, we
have

f(ω) = φ(ω)g(ω) = φ(ω)eg(ω)

= (φ⊗ e)(ω)g(ω) =
(
(φ⊗ e)g

)
(ω)

=
(
j(φ)g

)
(ω).

So f = j(φ)g. Therefore

χ(f) = χ
(
j(φ)g

)
= χ

(
j(φ)

)
χ(g)

=
(
χoj

)
(φ)χ(g) = δz(φ)χ(g)

= φ(z)χ(g) = 0× χ(g) = 0.

So f ∈ kerχ, and that means I ⊂ kerχ. This completes the proof.

Theorem 3.4. Every character χ on LipαA(X,B) is of form χ = ψoδz for some
character ψ on B and some z ∈ X, where δz(f) = f(z).

Proof. Let χ be an arbitrary character on LipαA(X,B). Then there is z ∈ X such
that χoj is the evaluation at z, indeed χoj = δz where δz(f) = f(z). Define

I := {f ∈ LipαA(X,B) : f(z) = 0}.

By Theorem 3.3, I is contained in the kernel of χ. It is clear that kerδz = I. Therefore
kerδz ⊂ kerχ. We obtain the desired factorization χ = ψoδz for some character ψ on
B.
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