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Let C be the set of all finite complex numbers. For any entire function f (z) =
∞∑
n=0

anz
n defined in C, the maximum modulus function Mf (r) on |z| = r is defined

by Mf (r) = max
|z|=r

|f (z)|. If f (z) is non-constant then Mf (r) is strictly increasing

and continuous. Also its inverse Mf
−1 : (|f (0)| ,∞)→ (0,∞) exists and is such that

lim
s→∞

Mf
−1 (s) = ∞. Naturally, Mf

−1 (r) is also an increasing function of r. Also a

non-constant entire function f (z) is said to have the Property (A) if for any δ > 1

and for all sufficiently large r, [Mf (r)]
2 ≤ Mf

(
rδ
)

holds (see [3]). For examples of
functions with or without the Property (A), one may see [3]. In this connection Lahiri
et al. (see [6]) prove that every entire function f (z) satisfying the property (A) is
transcendental. Moreover for any transcendental entire function f (z), it is well known

that lim
r→∞

logMf (r)
log r = ∞ and for its application in growth measurement, one may see

[8]. For another entire function g (z) , the ratio
Mf (r)
Mg(r)

as r →∞ is called the growth

of f (z) with respect to g (z) in terms of their maximum moduli. The notion of order
and lower order which are the main tools to study the comparative growth properties
of entire functions are very classical in complex analysis and their definitions are as
follows:
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Definition 1. The order and the lower order of an entire function f (z) denoted by
ρ (f) and λ (f) respectively are defined as

ρ (f)
λ (f)

= lim
r→∞

sup
inf

log logMf (r)

log logMexp z (r)
= lim
r→∞

sup
inf

log logMf (r)

log r
.

The rate of growth of an entire function generally depends upon order (respec-
tively, lower order) of it. The entire function with higher order is of faster growth
than that of lesser order. But if orders of two entire functions are same, then it is
impossible to detect the function with faster growth. In that case, it is necessary
to compute another class of growth indicators of entire functions called their types.
Thus the type σ (f) and lower type σ (f) of an entire function f (z) are defined as:

Definition 2. Let f (z) be an entire function with non zero finite order. Then the
type σ (f) and lower type σ (f) of an entire function f (z) are defined as

σ (f)
σ (f)

= lim
r→∞

sup
inf

logMf (r)

(logMexp z (r))
ρ(f)

= lim
r→∞

sup
inf

logMf (r)

rρ(f)
.

In order to calculate the order, it is seen that we have compared the maximum
modulus of entire function f (z) with that of exp z but here a question may arise
why should we compare the maximum modulus of any entire function with that of
only exp z whose growth rate is too high. From this view point, the relative order of
entire functions may be thought of by Bernal (see [2, 3]) who introduced the concept
of relative order between two entire functions to avoid comparing growth just with
exp z. Thus the relative order of an entire function f (z) with respect to an entire
function g (z), denoted by ρg (f) is define as:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1g (Mf (r))

log r
.

Similarly, one can define the relative lower order of f (z) with respect to g (z)
denoted by λg (f) as follows :

λg (f) = lim inf
r→∞

logM−1g (Mf (r))

log r
.

In the definition of relative order and relative lower order we generally compare
the maximum modulus of any entire function f (z) with that of any entire function
g (z) and it is quite natural that when g(z) = exp z, both the definitions of relative
order and relative lower order coincide with Definition 1.

In order to compare the relative growth of two entire functions having same non
zero finite relative order with respect to another entire function, Roy [7] introduced
the notion of relative type of two entire functions in the following way:
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Definition 3. [7] Let f (z) and g (z) be any two entire functions such that
0 < ρg (f) <∞. Then the relative type σg (f) of f (z) with respect to g (z) is de-
fined as:

σg (f) = inf
{
k > 0 : Mf (r) < Mg

(
krρg(f)

)
for all sufficiently large values of r

}
= lim sup

r→∞

M−1g (Mf (r))

rρg(f)
.

Similarly, one can define the relative lower type of an entire function f (z) with
respect to another entire function g (z) denoted by σg (f) when 0 < ρg (f) <∞ which
is as follows:

σg (f) = lim inf
r→∞

M−1g (Mf (r))

rρg(f)
.

It is obvious that 0 ≤ σg (f) ≤ σg (f) ≤ ∞.
If we consider g (z) = exp z, then one can easily verify that Definition 3 coincides

with the classical definitions of type and lower type respectively.

Like wise, to determine the relative growth of two entire functions having same
non zero finite relative lower order with respect to another entire function, one may
introduce the definition of relative weak type of an entire function f (z) with respect
to another entire function g (z) of finite positive relative lower order λg (f) in the
following way:

Definition 4. Let f (z) and g(z) be any two entire functions such that 0<λg (f)<∞.
The relative -weak type τg (f) and the growth indicator τg (f) of an entire function
f (z) with respect to another entire function g (z) are defined as:

τg (f)
τg (f)

= lim
r→∞

inf
sup

M−1g (Mf (r))

rλg(f)
.

For any two entire functions f (z), g (z) defined in C and for any real number
α ∈ (0, 1], Banerjee et al. [1] introduced the concept of generalized iteration of f (z)
with respect to g (z) in the following manner:

f1,g (z) = (1− α) z + αf (z)
f2,g (z) = (1− α) g1,f (z) + αf (g1,f (z))
f3,g (z) = (1− α) g2,f (z) + αf (g2,f (z))
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fn,g (z) = (1− α) gn−1,f (z) + αf (gn−1,f (z))

and so

g1,f (z) = (1− α) z + αg (z)
g2,f (z) = (1− α) f1,g (z) + αg (f1,g (z))
g3,f (z) = (1− α) f2,g (z) + αg (f2,g (z))
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
gn,f (z) = (1− α) fn−1,g (z) + αg (fn−1,g (z)) .
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Clearly all fn,g (z) and gn,f (z) are entire functions.
Further for another two non constant entire functions h (z) and k (z), one may

define the iteration of Mh
−1 (r) with respect to M−1k (r) in the following manner:

M−1h (r) = M−1h1
(r) ;

M−1k
(
M−1h (r)

)
= M−1k

(
M−1h1

(r)
)

= M−1h2
(r) ;

M−1h
(
M−1k

(
M−1h (r)

))
= M−1h

(
M−1h2

(r)
)

= M−1h3
(r) ;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
M−1h

(
.........

(
M−1h

(
M−1k

(
M−1h (r)

))))
= M−1hn (r) when n is odd and

M−1k
(
.........

(
M−1h

(
M−1k

(
M−1h (r)

))))
= M−1hn (r) when n is even.

Obviously Mhn
−1 (r) is an increasing functions of r.

During the past decades, several researchers made close investigations on the
growth properties of composite entire functions in different directions using their
classical growth indicators such as order and type but the study of growth properties
of composite entire functions using the concepts of relative order and relative type was
mostly unknown to complex analysis which is and is the prime concern of the paper.
The main aim of this paper is to study the growth properties of generalized iterated
entire functions in almost a new direction in the light of their relative orders, relative
types and relative weak types. Also our notation is standard within the theory of
Nevanlinna’s value distribution of entire functions which are available in [5] and [10].
Hence we do not explain those in details.

1. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [4] If f (z) and g (z) are any two entire functions with g (0) = 0. Let β

satisfy 0 < β < 1 and c (β) = (1−β)2
4β . Then for all sufficiently large values of r,

Mf (c (β)Mg (βr)) ≤Mf◦g (r) ≤Mf (Mg (r)) .

In addition if β = 1
2 , then for all sufficiently large values of r,

Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

))
.

Lemma 2. [3] Let f (z) be an entire function which satisfies the Property (A). Then
for any positive integer n and for all large r,

[Mf (r)]
n ≤Mf

(
rδ
)

holds where δ > 1.
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Lemma 3. [3] Let f (z) be an entire function, α > 1 and 0 < β < α. Then

Mf (αr) > βMf (r) .

Lemma 4. Let f (z), g (z) are any two transcendental entire functions and h (z),
k (z) are any two entire functions such that 0 < ρh (f) < ∞, 0 < ρk (g) < ∞ and
h (z) , k (z) satisfy the Property (A). Then for all sufficiently large values of r,

(i)
(
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1k (Mg (r)) when n is even

and

(ii)
(
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1h (Mf (r)) when n is odd

where δ > 1.

Proof. Let β be any positive integer such that max {ρh (f) , ρk (g)} < β hold. Since

for any transcendental entire function f (z),
logMf (r)

log r → ∞ as r → ∞, in view of
Lemma 1, Lemma 2 and for any even integer n, we get for all sufficiently large values
of r that

Mfn,g (r) ≤ (1− α)Mgn−1,f
(r) + αMf(gn−1,f ) (r)

⇒ Mfn,g (r) < (1− α)Mf

(
Mgn−1,f

(r)
)

+ αMf

(
Mgn−1,f

(r)
)

⇒ M−1h
(
Mfn,g (r)

)
< M−1h

(
Mf

(
Mgn−1,f

(r)
))

⇒ M−1h
(
Mfn,g (r)

)
<
(
Mgn−1,f

(r)
)β

⇒
(
M−1h

(
Mfn,g (r)

)) 1
β < Mgn−1,f

(r)

⇒
(
M−1h

(
Mfn,g (r)

)) 1
β < (1− α)Mfn−2,g

(r) + αMg(fn−2,g) (r)

⇒
(
M−1h

(
Mfn,g (r)

)) 1
β < (1− α)Mg

(
Mfn−2,g (r)

)
+ αMg

(
Mfn−2,g (r)

)
⇒ M−1k

((
M−1h

(
Mfn,g (r)

)) 1
β

)
< M−1k

(
Mg

(
Mfn−2,g

(r)
))

⇒
(
M−1k

(
M−1h

(
Mfn,g (r)

))) 1
δ < M−1k

(
Mg

(
Mfn−2,g (r)

))
⇒

(
M−1k

(
M−1h

(
Mfn,g (r)

))) 1
δ <

(
Mfn−2,g

(r)
)β

⇒
(
M−1k

(
M−1h

(
Mfn,g (r)

))) 1
δ·β < Mfn−2,g (r)

⇒
(
M−1h2

(
Mfn,g (r)

)) 1
δ·β < Mfn−2,g

(r)

⇒ M−1h

((
M−1h2

(
Mfn,g (r)

)) 1
δ·β
)
<
(
Mgn−3,f

(r)
)β

⇒
(
M−1h

(
M−1h2

(
Mfn,g (r)

))) 1
δ <

(
Mgn−3,f

(r)
)β

⇒
(
M−1h3

(
Mfn,g (r)

)) 1
δ·β < Mgn−3,f

(r)
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⇒ M−1k

((
M−1h3

(
Mfn,g (r)

)) 1
δ·β
)
<
(
Mfn−4,g (r)

)β
⇒

(
M−1h4

(
Mfn,g (r)

)) 1
δ·β < Mfn−4,g

(r)

...... .......... ........... ........

...... .......... ........... ........

Therefore

(
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1k (Mg (r)) when n is even.

Similarly, (
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1h (Mf (r)) when n is odd .

Hence the lemma follows.

Remark 1. If we consider 0 < ρh (f) ≤ 1 and 0 < ρk (g) ≤ 1 in Lemma 4, then it is
not necessary for both h (z) and k (z) to satisfy Property (A) and in this case Lemma
4 holds with δ = 1.

Lemma 5. Let f (z), g (z) are any two transcendental entire functions and h (z),
k (z) are any two entire functions such that 0 < λh (f) < ∞, 0 < λk (g) < ∞ and
h (z) , k (z) satisfy the Property (A). Also let δ > 1, 0 < β < α < 1, ω is a positive

integer such that min {λh (f) , λk (g)} > 1
ω and γn >

γωn−1

(α−β) where γ0 = 1. Then for

all sufficiently large values of r,

(i) γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1k

(
Mg

( r

18n

))
when n is even

and

(ii) γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1h

(
Mf

( r

18n

))
when n is odd .

Proof. Since for any transcendental entire function f ,
logMf (r)

log r → ∞ as r → ∞,

therefore
log β

(1−α)
Mf (r)

log r →∞ as r →∞ where 0 < β < α. Hence in view of Lemma 1,
Lemma 2, Lemma 3 and for any even integer n, we get for all sufficiently large values
of r that

Mfn,g (r) ≥ αMf(gn−1,f ) (r)− (1− α)Mgn−1,f
(r)
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⇒ Mfn,g (r) > αMf

(
Mgn−1,f

( r
18

))
− βMf

(
Mgn−1,f

( r
18

))
⇒ Mfn,g (r) > (α− β)Mf

(
Mgn−1,f

( r
18

))
⇒ M−1h

(
1

(α− β)
Mfn,g (r)

)
> M−1h

(
Mf

(
Mgn−1,f

( r
18

)))
⇒ M−1h

(
1

(α− β)
Mfn,g (r)

)
>
(
Mgn−1,f

( r
18

)) 1
ω

⇒
(
γ1M

−1
h

(
Mfn,g (r)

))ω
> Mgn−1,f

( r
18

)
⇒ γω1

(
M−1h

(
Mfn,g (r)

))ω
> αMg

(
Mfn−2,g

( r

182

))
− βMg

(
Mfn−2,g

( r

182

))
⇒ γω1

(
M−1h

(
Mfn,g (r)

))ω
> (α− β)Mg

(
Mfn−2,g

( r

182

))
⇒ γω1

(α− β)

(
M−1h

(
Mfn,g (r)

))ω
> Mg

(
Mfn−2,g

( r

182

))
⇒ M−1k

(
γω1

(α− β)

(
M−1h

(
Mfn,g (r)

))ω)
> M−1k

(
Mg

(
Mfn−2,g

( r

182

)))
⇒ γ2

(
M−1k

(
M−1h

(
Mfn,g (r)

)))δ
>
(
Mfn−2,g

( r

182

)) 1
ω

⇒ γω2
(
M−1h2

(
Mfn,g (r)

))δω
> Mfn−2,g

( r

182

)
⇒ M−1h

(
γω2

(α− β)

(
M−1h2

(
Mfn,g (r)

))δω)
>
(
Mgn−3,f

( r

183

)) 1
ω

⇒ γω3
(
M−1h

(
M−1h2

(
Mfn,g (r)

)))δω
> Mgn−3,f

( r

183

)
⇒ γω3

(
M−1h3

(
Mfn,g (r)

))δω
> Mgn−3,f

( r

183

)
⇒ γω4

(
M−1k

(
M−1h3

(
Mfn,g (r)

)))δω
> Mfn−4,g

( r

184

)
⇒ γω4

(
M−1h4

(
Mfn,g (r)

))δω
> Mfn−4,g

( r

184

)
...... .......... ........... ........

...... .......... ........... ........

Therefore

γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1k

(
Mg

( r

18n

))
when n is even.

Similarly,

γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1h

(
Mf

( r

18n

))
when n is odd.

Hence the lemma follows.

Remark 2. If we consider 1 ≤ λh (f) <∞ and 1 ≤ λk (g) <∞ in Lemma 5, then it
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is not necessary for both h and k to satisfy Property (A) and in this case Lemma 5
holds with δ = 1.

2. Main Results

In this section we present the main results of the paper. Throughout the paper,
we consider the entire functions H (z), K (z), h (z), k (z) satisfy the Property (A) as
and when necessary. Also consider that F (z), G (z), f (z), g (z) are non constant
entire functions.

Theorem 1. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) < ∞ and 0 < µ < ρk (g) < ∞. Then for any
even number n ,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h Mf (exp rδµ)

=∞,

where δ < 1.

Proof. From the first part of Lemma 5, we get for a sequence of values of r tending
to infinity that

M−1hn
(
Mfn,g (r)

)
>

(
1

γn

)δ ( r

18n

)δ(ρk(g)−ε)
, (2.1)

where γn is defined in Lemma 5.

Again from the definition of ρh (f) , we obtain for all sufficiently large values of r
that

logM−1h
(
Mf

(
exp rδµ

))
≤ (ρh (f) + ε) rδµ . (2.2)

Now from (2.1) and (2.2) , it follows for a sequence of values of r tending to infinity
that

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

>

(
1
γn

)δ (
r

18n

)δ(ρk(g)−ε)
(ρh (f) + ε) rδµ

. (2.3)

As µ < ρk (g) , we can choose ε(> 0) in such a way that

µ < ρk (g)− ε . (2.4)

Thus from (2.3) and (2.4) we get that

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

=∞ . (2.5)

Hence the theorem follows from (2.5) .
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Theorem 2. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) < ∞ and 0 < µ < ρk (g) < ∞. Then for any
even number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

=∞,

where δ < 1.

Proof. Let 0 < µ < µ0 < ρk (g). Then from (2.5), we obtain for a sequence of values
of r tending to infinity and A > 1 that

M−1hn
(
Mfn,g (r)

)
> A logM−1h

(
Mf

(
exp rδµ0

))
i.e., M−1hn

(
Mfn,g (r)

)
> A (λh (f)− ε) rδµ0 . (2.6)

Again from the definition of ρk (g) , we obtain for all sufficiently large values of r that

logM−1k
(
Mg

(
exp rδµ

))
≤ (ρk (g) + ε) rδµ . (2.7)

So combining (2.6) and (2.7) , we obtain for a sequence of values of r tending to
infinity that

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

>
A (λh (f)− ε) rδµ0

(ρk (g) + ε) rδµ
. (2.8)

Since µ0 > µ, from (2.8) it follows that

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

=∞ .

Thus the theorem follows.

Now we state the following two theorems without their proofs as those can easily
be carried out in the line of Theorem 1 and Theorem 2 respectively and with the help
of the second part of Lemma 5.

Theorem 3. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) <∞, 0 < λh (f) <∞ and 0 < µ < ρh (f) <∞. Then for any odd
number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

=∞,

where δ < 1.

Theorem 4. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) <∞, 0 < λh (f) <∞ and 0 < µ < ρh (f) <∞. Then for any odd
number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

=∞,

where δ < 1.
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Theorem 5. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < ρk (g) < ∞ and λk (g) < µ < ∞. Then for any even
number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

= 0,

where δ > 1.

Proof. From the first part of Lemma 4, it follows for a sequence of values of r tending
to infinity that

M−1hn
(
Mfn,g (r)

)
< rδ(λk(g)+ε). (2.9)

Again for all sufficiently large values of r we get that

logM−1h
(
Mf

(
exp rδµ

))
≥ (λh (f)− ε) rδµ. (2.10)

Now from (2.9) and (2.10) , it follows for a sequence of values of r tending to infinity
that

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

<
rδ(λk(g)+ε)

(λh (f)− ε) rδµ
. (2.11)

As λk (g) < µ, we can choose ε (> 0) in such a way that

λk (g) + ε < µ . (2.12)

Thus the theorem follows from (2.11) and (2.12).

In the line of Theorem 5, we may state the following theorem without its proof:

Theorem 6. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and λk (g) < µ <∞. Then for any even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

= 0,

where δ > 1.

Theorem 7. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) < ∞, 0 < ρh (f) < ∞ and λh (f) < µ < ∞. Then for any odd
number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

= 0,

where δ > 1.

Theorem 8. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
Let f (z), g (z) , k (z) and h (z) be any four entire functions such that 0 < ρk (g) <∞,
0 < ρh (f) <∞ and λh (f) < µ <∞. Then for any odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

= 0,

where δ > 1.
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We omit the proofs of Theorem 7 and Theorem 8 as those can be carried out in
the line of Theorem 5 and Theorem 6 respectively and with the help of the second
part of Lemma 4.

Theorem 9. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞ and 0 < λk (g) < ∞. Also let γ be a positive continuous
on [0,+∞) function increasing to +∞. Then for every real number κ and positive
integer n

lim
r→∞

M−1hn
(
Mfn,g (r)

){
logM−1h (Mf (exp γ (r)))

}1+κ =∞,

where

lim
r→∞

log γ (r)

log r
= 0.

Proof. First let us consider n to be an even integer. If κ be such that 1 +κ ≤ 0 then
the theorem is trivial. So we suppose that 1 + κ > 0. Now it follows from the first
part of Lemma 5, for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
>

(
1

γn

) 1
δ ( r

18n

)λk(g)−ε
δ

, (2.13)

where δ and γn are defined in Lemma 5.
Again from the definition of ρh (f) , it follows for all sufficiently large values of r

that {
logM−1h (Mf (exp γ (r))

}1+κ ≤ (ρh (f) + ε)
1+κ

(γ (r))
1+κ

. (2.14)

Now from (2.13) and (2.14) , it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

){
logM−1h (Mf (exp γ (r)))

}1+κ >
(

1
γn

) 1
δ ·
(

1
18n

)λk(g)−ε
δ · r

λk(g)−ε
δ

(ρh (f) + ε)
1+κ

(γ (r))
1+κ .

Since lim
r→∞

log γ(r)
log r = 0, therefore r

λk(g)−ε
δ

(γ(r))1+κ
→ ∞ as r → ∞, then from above it

follows that

lim inf
r→∞

M−1hn
(
Mfn,g (r)

){
logM−1h (Mf (exp γ (r)))

}1+κ =∞ for any even number n.

Similarly, with the help of the second part of Lemma 5 one can easily derive the same
conclusion for any odd integer n.

Hence the theorem follows.

Remark 3. Theorem 9 is still valid with “limit superior” instead of “ limit ” if we
replace the condition “ 0 < λh (f) ≤ ρh (f) <∞” by “ 0 < λh (f) <∞”.

In the line of Theorem 9, one may state the following theorem without its proof:
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Theorem 10. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞ and 0 < λk (g) ≤ ρk (g) < ∞. Also let γ be a positive continuous
on [0,+∞) function increasing to +∞. Then for every real number κ and positive
integer n

lim
r→∞

M−1hn
(
Mfn,g (r)

){
logM−1k (Mg(exp γ (r)))

}1+κ =∞,

where

lim
r→∞

log γ (r)

log r
= 0.

Remark 4. In Theorem 10 if we take the condition 0 < λk (g) < ∞ instead of
0 < λk (g) ≤ ρk (g) <∞, then also Theorem 10 remains true with “limit superior” in
place of “ limit ”.

Theorem 11. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞ and 0 < ρk (g) < ∞. Also let γ be a positive continuous
on [0,+∞) function increasing to +∞. Then for each κ ∈ (−∞,∞) and positive
integer n

lim
r→∞

(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1h (Mf (exp γ (r)))

= 0,

where

lim
r→∞

log γ (r)

log r
=∞.

Proof. If 1 + κ ≤ 0, then the theorem is obvious. We consider that 1 + κ > 0. Also
let us consider n to be an even integer. Now it follows from the first part of Lemma
4 for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
< rδ(ρk(g)+ε), (2.15)

where δ > 1.
Again for all sufficiently large values of r we get that

logM−1h (Mf (exp γ (r))) ≥ (λh (f)− ε) γ (r) . (2.16)

Hence for all sufficiently large values of r, we obtain from (2.15) and (2.16) that(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1h (Mf (exp γ (r)))

<
rδ(ρk(g)+ε)(1+κ)

(λh (f)− ε) γ (r)
, (2.17)

where we choose 0 < ε < min {λh (f) , ρk (g)}.
Since lim

r→∞
log γ(r)
log r =∞, therefore rδ(ρk(g)+ε)(1+κ)

γ(r) →∞ as r →∞, then from (2.17)

we obtain that

lim inf
r→∞

(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1h (Mf (exp γ (r)))

= 0 for any even number n.
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Similarly, with the help of the second part of Lemma 4 one can easily derive the same
conclusion for any odd integer n.

This proves the theorem.

Remark 5. In Theorem 11 if we take the condition 0 < ρh (f) < ∞ instead of
0 < λh (f) ≤ ρh (f) <∞, the theorem remains true with “ limit inferior” in place of
“limit ”.

In view of Theorem 11, the following theorem can be carried out :

Theorem 12. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Also let γ be a positive continuous on
[0,+∞) function increasing to +∞. Then for each κ ∈ (−∞,∞) and positive integer
n

lim
r→∞

(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1k (Mg(exp γ (r)))

= 0,

where

lim
r→∞

log γ (r)

log r
=∞ .

The proof is omitted.

Remark 6. In Theorem 12 if we take the condition 0 < ρk (g) < ∞ instead of
0 < λk (g) ≤ ρk (g) <∞ then the theorem remains true with “ limit inferior” in place
of “limit ”.

Theorem 13. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
λk (g) < λh (f) ≤ ρh (f) <∞ and 0 < ρk (g) <∞. Then for any even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
M−1h (Mf (rδ))

= 0,

where δ > 1.

Proof. From the first part of Lemma 4, we obtain for a sequence of values of r tending
to infinity that

M−1hn
(
Mfn,g (r)

)
< rδ(λk(g)+ε). (2.18)

Again from the definition of relative order, we obtain for all sufficiently large values
of r that

M−1h
(
Mf

(
rδ
))

> rδ(λh(f)−ε). (2.19)

Now in view of (2.18) and (2.19) , we get for a sequence of values of r tending to
infinity that

M−1hn
(
Mfn,g (r)

)
M−1h (Mf (rδ))

<
rδ(λk(g)+ε)

rδ(λh(f)−ε)
. (2.20)

Since λk (g) < λh (f) , we can choose ε (> 0) in such a way that λk (g)+ε < λh (f)−ε
and then the theorem follows from (2.20) .
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Remark 7. If we take 0 < ρk (g) < λh (f) ≤ ρh (f) < ∞ instead of “λk (g) <
λh (f) ≤ ρh (f) <∞ and ρk (g) <∞” and the other conditions remain the same, the
conclusion of Theorem 13 remains valid with “limit inferior” replaced by “limit”.

Theorem 14. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
λh (f) < λk (g) ≤ ρk (g) <∞ and 0 < ρh (f) <∞. Then for any odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
M−1k (Mg (rδ))

= 0,

where δ > 1.

The proof of Theorem 14 is omitted as it can be carried out in the line of Theorem
13 and with the help of the second part of Lemma 4.

Remark 8. If we consider 0 < ρh (f) < λk (g) ≤ ρk (g) < ∞ instead of “λh (f) <
λk (g) ≤ ρk (g) <∞ and ρh (f) <∞” and the other conditions remain the same, the
conclusion of Theorem 13 remains valid with “limit inferior” replaced by “limit”.

Theorem 15. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < ρk (g) <∞. Then

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ ρk (g)

λh (f)
when n is even,

and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ ρh (f)

λh (f)
when n is any odd integer

where δ > 1.

Proof. From the first part of Lemma 4, it follows for all sufficiently large values of r
that

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

<
δ logM−1k (Mg (r))

logM−1h (Mf (rδ))

i.e.,
logM−1hn

(
Mfn,g (r)

)
logM−1h (Mf (rδ))

<
δ logM−1k (Mg (r))

δ log r
· log rδ

logM−1h (Mf (rδ))

i.e., lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ lim sup
r→∞

logM−1k (Mg (r))

log r
· lim sup
r→∞

log rδ

logM−1h (Mf (rδ))

i.e., lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ ρk (g) · 1

λh (f)
=
ρk (g)

λh (f)
.

Thus the first part of theorem follows from above.
Similarly, with the help of the second part of Lemma 4 one can easily derive

conclusion of the second part of theorem.
Hence the theorem follows.
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Theorem 16. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) <∞ and 0 < ρh (f) <∞.Then

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ ρk (g)

λk (g)
when n is even,

and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ ρh (f)

λk (g)
when is any odd integer

where δ > 1.

The proof of Theorem 16 is omitted as it can be carried out in the line of Theo-
rem 15.

Now we state the following two theorems without their proofs as those can easily
be carried out in the line of Theorem 15 and Theorem 16 respectively and with the
help of Lemma 4.

Theorem 17. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ λk (g)

λh (f)
when n is even,

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ 1 when n is any odd integer

where δ > 1.

Theorem 18. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ 1 when n is even,

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ λh (f)

λk (g)
when n is any odd integer

where δ > 1.

Theorem 19. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) <∞ and 0 < λk (g) <∞. Then for any even number n,

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ λk (g)

ρh (f)
when 0 < ρh (f) <∞

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ λk (g)

ρk (g)
when 0 < ρk (g) <∞,

where δ < 1.
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Proof. From the first part of Lemma 5, we obtain for all sufficiently large values of
r that

logM−1hn
(
Mfn,g (r)

)
> δ (λk (g)− ε) log

( r

18n

)
+ log

(
1

γn

)
, (2.21)

where γn is defined in Lemma 5.
Also from the definition of ρh (f), we obtain for all sufficiently large values of r

that
logM−1h

(
Mf

(
rδ
))
≤ δ (ρh (f) + ε) log r. (2.22)

Analogously,from the definition of ρk (g), it follows for all sufficiently large values of
r that

logM−1k
(
Mg

(
rδ
))
≤ δ (ρk (g) + ε) log r. (2.23)

Now from (2.21) and (2.22), it follows for all sufficiently large values of r that

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

>
δ (λk (g)− ε) log

(
r

18n

)
+ log

(
1
γn

)
δ (ρh (f) + ε) log r

i.e., lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ λk (g)

ρh (f)
. (2.24)

Thus the first part of theorem follows from (2.24).
Similarly, the conclusion of the second part of theorem can easily be derived from

(2.21) and (2.23) .
Hence the theorem follows.

Theorem 20. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) <∞ and 0 < λk (g) <∞. Then for any odd number n,

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ λh (f)

ρh (f)
when 0 < ρh (f) <∞

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ λh (f)

ρk (g)
when 0 < ρk (g) <∞,

where δ < 1.

The proof of Theorem 20 is omitted as it can be carried out in the line of Theorem
19 and with the help of the second part of Lemma 5.

Now we state the following two theorems without their proofs as those can easily
be carried out in the line of Theorem 19 and Theorem 20 respectively and with the
help of Lemma 5.

Theorem 21. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then for any even number n,

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ ρk (g)

ρh (f)
when 0 < ρh (f) <∞
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and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ 1,when 0 < ρk (g) <∞,

where δ < 1.

Theorem 22. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < λk (g) <∞. Then for any odd number n ,

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ ρh (f)

ρk (g)
when 0 < ρk (g) <∞

and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ 1 when 0 < ρh (f) <∞,

where δ < 1.

Theorem 23. Let F (z), G (z), H (z), K (z), f (z), g (z), h (z) and k (z) are all
entire functions such that 0 < λH (F ) < ∞, 0 < λK (G) < ∞, 0 < ρh (f) < ∞ and
0 < ρk (g) <∞. Then for any two integers m and n

(i) lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞

and

(ii) lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1k (Mg (r))

=∞,

when for any δ > 1 be such that

δ2ρk (g) < λK (G) for m and n both even

δ2ρh (f) < λH (F ) for m and n both odd

δ2ρh (f) < λK (G) for m even and n odd

δ2ρk (g) < λH (F ) for m odd and n even .

(2.25)

Proof. We have from the definition of relative order and for all sufficiently large
values of r that

logM−1h (Mf (r)) ≤ (ρh (f) + ε) log r. (2.26)

Case I. Let m and n are any two even numbers.
Therefore in view of first part of Lemma 4, we get for all sufficiently large values

of r that
M−1hn

(
Mfn,g (r)

)
< (r)

δ(ρk(g)+ε) , (2.27)

where δ > 1.



36 T. Biswas

So from (2.26) and (2.27) it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
· logM−1h (Mf (r)) < (r)

δ(ρk(g)+ε) · (ρh (f) + ε) log r. (2.28)

Also from first part of Lemma 5, we obtain for all sufficiently large values of r that

M−1Hm
(
MFm,G (r)

)
>

(
1

γm

) 1
δ ( r

18m

) (λK (G)−ε)
δ

, (2.29)

where δ > 1 and γm is defined in Lemma 5.
Hence combining (2.28) and (2.29) we get for all sufficiently large values of r that,

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λK (G)−ε)
δ

(r)
δ(ρk(g)+ε) · (ρh (f) + ε) log r

. (2.30)

Since δ2ρk (g) < λK (G), we can choose ε(> 0) in such a manner that

δ2 (ρk (g) + ε) ≤ (λK (G)− ε) . (2.31)

Thus from (2.30) and (2.31) we obtain that

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.32)

Case II. Let m and n are any two odd numbers .
Now in view of second part of Lemma 4, we get for all sufficiently large values of

r that
M−1hn

(
Mfn,g (r)

)
< (r)

δ(ρh(f)+ε) , (2.33)

where δ > 1.
So from (2.26) and (2.33) it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
· logM−1h (Mf (r)) < (r)

δ(ρh(f)+ε) · (ρh (f) + ε) log r. (2.34)

Also from second part of Lemma 5, we obtain for all sufficiently large values of r
that

M−1Hm
(
MFm,G (r)

)
>

(
1

γm

) 1
δ ( r

18m

) (λH (F )−ε)
δ

. (2.35)

Hence combining (2.34) and (2.35) we get for all sufficiently large values of r that,

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λH (F )−ε)
δ

(r)
δ(ρh(f)+ε) · (ρh (f) + ε) log r

. (2.36)

As δ2ρh (f) < λH (F ), we can choose ε(> 0) in such a manner that

δ2 (ρh (f) + ε) ≤ (λH (F )− ε) . (2.37)
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Therefore from (2.36) and (2.37) it follows that

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.38)

Case III. Let m be any even number and n be any odd number.
Then combining (2.29) and (2.34) we get for all sufficiently large values of r that

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λK (G)−ε)
δ

(r)
δ(ρh(f)+ε) · (ρh (f) + ε) log r

. (2.39)

Since δ2ρh (f) < λK (G), we can choose ε(> 0) in such a manner that

δ2 (ρh (f) + ε) ≤ (λK (G)− ε) . (2.40)

So from (2.39) and (2.40) we get that

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.41)

Case IV. Let m be any odd number and n be any even number .
Therefore combining (2.28) and (2.35) we obtain for all sufficiently large values of

r that

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λH (F )−ε)
δ

(r)
δ(ρk(g)+ε) · (ρh (f) + ε) log r

. (2.42)

As δ2ρk (g) < λH (F ), we can choose ε(> 0) in such a manner that

δ2 (ρk (g) + ε) ≤ (λH (F )− ε) . (2.43)

Hence from (2.42) and (2.43) we have

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.44)

Thus the first part of the theorem follows from (2.32) , (2.38) , (2.41) and (2.44) .
Similarly, from the definition of ρk (g) one can easily derive the conclusion of the

second part of the theorem.
Hence the theorem follows.

Remark 9. If we consider ρK (G) , ρH (F ) , ρK (G) and ρH (F ) instead of λK (G) ,
λH (F ) , λK (G) and λH (F ) respectively in (2.25) and the other conditions remain
the same, the conclusion of Theorem 23 is remain valid with “limit superior” replaced
by “limit”.
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Theorem 24. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and σk (g) <∞. Then for any even number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≤ (σk (g))

δ

λh (f)
if λh (f) 6= 0

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≤ (σk (g))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Proof. In view of the first part of Lemma 4 we have for all sufficiently large values
of r that

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) <

(
M−1k (Mg (r))

)δ
logM−1h

(
Mf

(
exp (r)

δρk(g)
))

i.e.,

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) <

(
M−1k (Mg (r))

rρk(g)

)δ
· log exp (r)

δρk(g)

logM−1h

(
Mf

(
exp (r)

δρk(g)
))

i.e., lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
))

≤
(

lim sup
r→∞

M−1k (Mg (r))

rρk(g)

)δ
· lim sup
r→∞

log exp (r)
δρk(g)

logM−1h

(
Mf

(
exp (r)

δρk(g)
))

i.e., lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≤ (σk (g))

δ · 1

λh (f)
=

(σk (g))
δ

λh (f)
.

Thus the first part of theorem is established.
Similarly, with the help of the first part of Lemma 4 one can easily derive conclusion

of the second part of theorem.
Hence the theorem follows.

Theorem 25. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σk (g) < ∞. Then for any
even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≤ min

{
(σk (g))

δ

λh (f)
,

(σk (g))
δ

ρh (f)

}
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and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≤ min

{
(σk (g))

δ

λk (g)
,

(σk (g))
δ

ρk (g)

}
,

where δ > 1.

Proof of Theorem 25 is omitted as it can be carried out in the line of Theorem 24
and with help of the first part of Lemma 4.

Now we state the following two theorems without their proofs as those can easily
be carried out with the help of second part of Lemma 4 and in the line of Theorem
24 and Theorem 25 respectively.

Theorem 26. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and σh (f) <∞. Then for any odd number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≤ (σh (f))

δ

λh (f)
if λh (f) 6= 0

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≤ (σh (f))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Theorem 27. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σh (f) < ∞. Then for any
odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≤ min

{
(σh (f))

δ

λh (f)
,

(σh (f))
δ

ρh (f)

}

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≤ min

{
(σh (f))

δ

λk (g)
,

(σh (f))
δ

ρk (g)

}
,

where δ > 1.

Analogously, one may state the following four theorems without their proofs
on the basis of relative weak type of entire function with respect to another entire
function :

Theorem 28. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and τk (g) <∞. Then for any even number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≤ (τk (g))

δ

λh (f)
if λh (f) 6= 0
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and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≤ (τk (g))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Theorem 29. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and τk (g) < ∞. Then for any
even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≤ min

{
(τk (g))

δ

λh (f)
,

(τk (g))
δ

ρh (f)

}

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≤ min

{
(τk (g))

δ

λk (g)
,

(τk (g))
δ

ρk (g)

}
,

where δ > 1.

Theorem 30. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and τh (f) <∞. Then for any odd number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≤ (τh (f))

δ

λh (f)
if λh (f) 6= 0

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≤ (τh (f))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Theorem 31. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and τh (f) < ∞. Then for any
odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≤ min

{
(τh (f))

δ

λh (f)
,

(τh (f))
δ

ρh (f)

}

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≤ min

{
(τh (f))

δ

λk (g)
,

(τh (f))
δ

ρk (g)

}
,

where δ > 1.
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Theorem 32. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and σk (g) > 0. Then for any even number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≥ Aσk (g)

ρh (f)
if ρh (f) <∞

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≥ Aσk (g)

ρk (g)
if ρk (g) <∞,

where A = 1

[18nρk(g)·γn]
δ and γn is defined in Lemma 5.

Proof. From the first part of Lemma 5, we obtain for all sufficiently large values of
r that

M−1hn
(
Mfn,g (r)

)
>

1[
18nρk(g) · γn

]δ (σk (g)− ε) rδρk(g)

i.e., M−1hn
(
Mfn,g (r)

)
> A (σk (g)− ε) rδρk(g). (2.45)

Also from the definition of ρh (f) , we obtain for all sufficiently large values of r
that

logM−1h

(
Mf

(
exp (r)

δρk(g)
))
≤ (ρh (f) + ε) rδρk(g). (2.46)

Analogously,from the definition of ρk (g) , it follows for all sufficiently large values
of r that

logM−1k

(
Mg

(
exp (r)

δρk(g)
))
≤ (ρk (g) + ε) rδρk(g). (2.47)

Now from (2.45) and (2.46) , it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) > A

(σk (g)− ε) rδρk(g)

(ρh (f) + ε) rδρk(g)

i.e., lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≥ A

σk (g)

ρh (f)
. (2.48)

Thus the first part of theorem follows from (2.48).
Like wise, the conclusion of the second part of theorem can easily be derived from

(2.45) and (2.47) .
Hence the theorem follows.

Theorem 33. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σk (g) > 0. Then for any
even number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≥ A ·max

{
σk (g)

ρh (f)
,
σk (g)

λh (f)

}
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and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≥ A ·max

{
σk (g)

ρk (g)
,
σk (g)

λk (g)

}
,

where A = 1

[18nρk(g)·γn]
δ and γn is defined in Lemma 5.

Proof of Theorem 33 is omitted as it can be carried out in the line of Theorem 32
and with help of the first part of Lemma 5.

Similarly, we state the following two theorems without their proofs as those can
easily be carried out with the help of second part of Lemma 5 and in the line of
Theorem 32 and Theorem 33 respectively.

Theorem 34. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and σh (f) > 0. Then for any odd number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≥ Aσh (f)

ρh (f)
if ρh (f) <∞

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≥ Aσh (f)

ρk (g)
if ρk (g) <∞ ,

where A = 1

[18nρh(f)·γn]
δ and γn is defined in Lemma 5.

Theorem 35. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and σh (f) > 0. Then for any odd
number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≥ A ·max

{
σh (f)

ρh (f)
,
σh (f)

λh (f)

}

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≥ A ·max

{
σh (f)

ρk (g)
,
σh (f)

λk (g)

}
,

where A = 1

[18nρh(f)·γn]
δ and γn is defined in Lemma 5.

Similarly, one may state the following four theorems without their proofs on the
basis of relative weak type of entire function with respect to another entire function:

Theorem 36. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and τk (g) > 0. Then for any even number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≥ A τk (g)

ρh (f)
if ρh (f) <∞
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and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≥ Aτk (g)

ρk (g)
if ρk (g) <∞,

where A = 1

[18nλk(g)·γn]
δ and γn is defined in Lemma 5.

Theorem 37. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τk (g) > 0. Then for any even
number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≥ A ·max

{
τk (g)

ρh (f)
,
τk (g)

λh (f)

}

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≥ A ·max

{
τk (g)

ρk (g)
,
τk (g)

λk (g)

}
,

where A = 1

[18nλk(g)·γn]
δ and γn is defined in Lemma 5.

Theorem 38. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and τh (f) > 0. Then for any odd number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≥ Aτh (f)

ρh (f)
if ρh (f) <∞

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≥ Aτh (f)

ρk (g)
if ρk (g) <∞,

where A = 1

[18nλh(f)·γn]
δ and γn is defined in Lemma 5.

Theorem 39. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τh (f) > 0. Then for any odd
number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≥ A ·max

{
τh (f)

ρh (f)
,
τh (f)

λh (f)

}

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≥ A ·max

{
τh (f)

ρk (g)
,
τh (f)

λk (g)

}
,

where A = 1

[18nλh(f)·γn]
δ and γn is defined in Lemma 5.
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