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Abstract: Let f, g : Cn → C be holomorphic functions. Define
u(z, w) = |w − f(z)|4 + |w − g(z)|4, v(z, w) = |w − f(z)|2 + |w − g(z)|2,
for (z, w) ∈ Cn × C. A comparison between the convexity of u and v is
obtained under suitable conditions.
Now consider four holomorphic functions φ1, φ2 : Cm → C and g1, g2 :
Cn → C. We prove that F = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on
Cn × Cm if and only if n = m = 1 and φ1, φ2, g1, g2 are affine functions
with (φ′

1g
′
2 − φ′

2g
′
1) ̸= 0.

Finally, it is shown that the product of four absolute values of plurihar-
monic functions is plurisubharmonic if and only if the functions satisfy
special conditions as well.
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1. Introduction

Convex functions recently are studied in complex analysis because they appear in the
theory of holomorphic functions, plurisubharmonic (psh) functions, currents, Lelong
numbers, extension problems, holomorphic representation theory (see [2], [5], [6], [7],
[8], [10], [11], [13], [14], [15], [16], [17] and [19]).
It is worth mentioning that an interesting relation between convex and plurisubhar-
monic functions has been obtained in [2].
Several papers appeared recently to this topic, let us mention [2], [3], [5], [6], [15], [19]
and the monographs [11], [14], [19] and more recently [5].
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Let n ≥ 1. We can construct a C∞ strictly psh function F defined on Cn × C,
such that F is not convex (and not concave) on each Euclidean not empty open ball
subset in Cn × C. For instance,

F (z, w) = |w − ez1 |2 + ...+ |w − ezn |2, for z = (z1, ..., zn) ∈ Cn, w ∈ C.

Moreover, for the case of one complex variable, let λ(z) = 2x2 − y2, z = (x+ iy) ∈ C,
x = Re(z). Then λ is a C∞ strictly sh function on C, while λ is not convex (respec-
tively not concave) at each point of C.
This proves that the new class of functions, consisting of convex and strictly psh func-
tions, is well defined because we can not compare the two families (convex functions)
and (convex and strictly psh functions).
Now thanks to [2], we know the holomorphic representation of each holomorphic
function f : Cn → C under the suitable condition of the convexity of its modulus.

Let δ ∈ [1,+∞[. We have the following observation.
Put K(z, w) = |w−f(z)|δ and H(z, w) = |w−f(z)|, for (z, w) ∈ C2, where f : C → C
is holomorphic. Assume that K is convex on C2 and δ > 1. Then H is convex on
C2 and we have Hs is convex on C2, for each s ∈ [1,+∞[ independently of δ and
conversely.
Now let f1, f2 : C → C be two holomorphic functions and s ∈ N\{0}. Define
K2s(z, w) = |w − f1(z)|2s + |w − f2(z)|2s, for (z, w) ∈ C2. By theorem 10, we have
that K4 is convex on C2 implies that K2 is convex on C2. But the converse is not
true. For instance, let f1(z) = z4, f2(z) = −z4, z ∈ C. Then K2 is convex on C2. But
K4 is not convex on C2. This remark leads to the following problem.

Let N ∈ N\{0, 1} and F1, ..., FN : Cn → C be holomorphic functions. Define

ψδ(z, w) = |w − F1(z)|δ + ...+ |w − FN (z)|δ, for (z, w) ∈ Cn × C.

Suppose that ψδ is convex on Cn × C.
Firstly, for the study of the convexity of ψδ, we observe that we study separately

the following two cases.
Case 1. δ ∈ [1,+∞[\{2}.
Case 2. δ = 2.
Is it true that δ ∈ [1,+∞[\{2}, implies that F1, ..., FN are affine functions?
Recall that for δ = 2, there exists several cases where ψ2 is convex on Cn × C, but
F1, ..., FN are not affine functions.
Moreover, for N = 2, by a limiting argument and a specific holomorphic differential
equation, we prove that ψ1 is convex on Cn × C if and only if F1 and F2 are affine
functions. Indeed, ψ2k is convex on Cn×C if and only if F1 and F2 are affine functions,
for k ∈ N\{0, 1}.

The paper is organized as follows. In section 2, we shall use an elementary holo-
morphic differential equation in the proofs of the following two technical questions.
Let A1, A2 ∈ C and n,m ∈ N\{0}. Characterize exactly all the 3 holomorphic func-
tions φ : Cm → C and g1, g2 : Cn → C such that u is convex (respectively convex and
strictly plurisubharmonic) on Cn × Cm, where

u(z, w) = |A1φ(w)− g1(z)|2 + |A2φ(w)− g2(z)|2, for (z, w) ∈ Cn × Cm.
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In this case find the expressions of φ, g1 and g2.
Moreover, find all the three holomorphic functions φ : Cm → C and f1, f2 : Cn → C
such that v is convex and strictly psh on Cn × Cm, where

v(z, w) = |A1φ(w)− f1(z)|2 + |A2φ(w)− f2(z)|2, (z, w) ∈ Cn × Cm.

We prove that we have a great differences between the 2 classes of functions defined
similar as u and v.

Now let k1, k2 : G → Ct be two holomorphic functions. Then the functions
∥ k1 + k2 ∥2 and (∥ k1 + λ ∥2 + ∥ k2 + δ ∥2) have the same hermitian Levi form on G,
where G is a domain of Cs, λ, δ ∈ Ct and s, t ∈ N\{0}.
For the applications, we can see the proof of theorem 4, corollary 1, theorem 5 and
others.

In section 3, we consider the following problems.
Problem 1. Let n,m ≥ 1. Find all the 4 holomorphic functions φ1, φ2 : Cm → C and
g1, g2 : Cn → C such that ψ = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on Cn × Cm.
Problem 2. Characterize all the holomorphic functions φ1, φ2 : Cm → C and g1, g2 :
Cn → C such that ψ = |φ1 − g1|2 + |φ2 − g2|2 is convex and strictly psh (respectively
convex) on Cn × Cm.

Before stating it, we can study the analysis question. Find all the holomorphic
functions φ1, φ2, ψ1, ψ2 : Cm → C and f1, f2, g1, g2 : Cn → C, such that u1 and
u2 are convex and u = (u1 + u2) is strictly psh on Cn × Cm. Where u1(z, w) =
|φ1(w) − f1(z)|2 + |φ2(w) − f2(z)|2, u2(z, w) = |ψ1(w) − g1(z)|2 + |ψ2(w) − g2(z)|2,
for (z, w) ∈ Cn × Cm.

In section 4, we use an algebraic method to mainly focus on properties of the
new structure (convex and strictly psh) and their relations with the holomorphic
representation theory.

In section 5 we study the product of several absolute values of pluriharmonic (prh)
functions and some auxiliary results are proved.
Let U be a domain of Rd, (d ≥ 2). Put sh(U) the set of all subharmonic functions on U.
For f : U → C be a function, |f | is the modulus of f. For N ≥ 1 and h = (h1, ..., hN ),

where h1, ..., hN : U → C, ∥ h ∥= (|h1|2 + ...+ |hN |2) 1
2 .

Let g : D → C be an analytic function, D is a domain of C. We denote ∂mg
∂zm the

holomorphic derivative of g of order m, for all m ∈ N\{0}.
If ξ = (ξ1, ..., ξn) ∈ Cn, and z = (z1, . . . , zn ∈ Cn we write < z/ξ >= z1ξ1 + ...+ znξn
and B(ξ, r) = {ζ ∈ Cn/ ∥ ζ − ξ ∥< r} for r > 0, where

√
< ξ/ξ > =∥ ξ ∥ is the

Euclidean norm of ξ. The Lebesgue measure on Cn is denoted by m2n and Ck(U) =
{φ : U → C / φ is a function of class Ck on U}, k ∈ N ∪ {∞}\{0}.
Let D be a domain of Cn, (n ≥ 1). An usual psh(D) and prh(D) are respectively the
classes of plurisubharmonic and pluriharmonic functions on D. For all a ∈ C, |a| is
the modulus of a, Re(a) is the real part of a and D(a, r) = {z ∈ C / |z − a| < r} for
r > 0.

For the study of properties and extension problems of analytic and plurisubhar-
monic functions we cite the references [1], [6], [7], [8], [9], [10], [12], [13], [15], [16] and
[17]. For the study of convex functions in complex convex domains, we cite [5], [11],
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[14], [2] and [19].
For the theory of n− subharmonic functions we cite [18].

2. A family of analytic functions and the holomorphic
representation theory

We have

Lemma 1. Let g = (g1, ..., gN ), f = (f1, ..., fN ) : D → CN be two holomorphic
functions, N ≥ 1, D is a domain of Cn, n ≥ 1 and a, b ∈ CN . Then
∥ f + g ∥2 and (∥ f + a ∥2 + ∥ g + b ∥2) have the same hermitian Levi form on D.
On the other hand, let u : D → R be a function of class C2. Define u1 = (u+
∥ f + g ∥2), u2 = (u+ ∥ f + a ∥2 + ∥ g + b ∥2).
Then u1 and u2 are functions of class C2 on D and we have the assertion.
The function u1 is strictly psh on D if and only if u2 is strictly psh on D.
(Observe that if N < n, then ∥ g ∥2 is not strictly psh at each point of D).

Proof. We have ∥ f + g ∥2= |f1 + g1|2 + ...+ |fN + gN |2 = |f1|2 + |g1|2 + ...+ |fN |2 +

|gN |2 +
N∑
j=1

(gjfj + gjfj) =∥ g ∥2 + ∥ f ∥2 +

N∑
j=1

(gjfj + gjfj).

Since (gjfj + gjfj) is prh on D, then

N∑
j=1

(gjfj + gjfj) is prh on D.

Consequently, ∥ f + g ∥2 and (∥ f + a ∥2 + ∥ g + b ∥2) have the same hermitian Levi
form on D.

By [4], we have

Theorem 1. Let φ : Cm → C be a holomorphic nonconstant function, m ≥ 1. Given
A1, A2 ∈ C\{0} and n ≥ 1.
The following conditions are equivalent
(I) There exists 2 holomorphic functions g1, g2 : Cn → C such that u is convex on
Cn × Cm, u(z, w) = |A1φ(w)− g1(z)|2 + |A2φ(w)− g2(z)|2, (z, w) ∈ Cn × Cm;
(II) There exists c ∈ C such that |φ+ c|2 is convex on Cm.

Now in all of this section, (A1, A2) ∈ C2. Let φ : Cm → C be a holomor-
phic nonconstant function, m ≥ 1. Let g1, g2 : Cn → C be 2 holomorphic func-
tions, n ≥ 1. Define u(z, w) = |A1φ(w) − g1(z)|2 + |A2φ(w) − g2(z)|2, u1(z, w) =
|A1φ(w)− g1(z)|2 + |A2φ(w)− g2(z)|2, u2 = u+ u1, for (z, w) ∈ Cn ×Cm. v(z, w) =
|A1φ(w)−g1(z)|2+|A2φ(w)−g2(z)|2, v1(z, w) = |A1φ(w)−g1(z)|2+|A2φ(w)−g2(z)|2
and v2 = v + v1, (z, w) ∈ Cn × Cm. We have

Theorem 2. Assume that (A1, A2) ∈ C2\{0}. The following conditions are equivalent
(I) u is convex on Cn × Cm;
(II) φ is an affine function on Cm, or φ is not affine and there exists c ∈ C such that
|φ+ c|2 is convex on Cm and we have the following cases.
Case 1. The function φ is affine on Cm.
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Then we have the representation{
g1(z) = A1(< z/λ1 > +µ1) +A2φ1(z)
g2(z) = A2(< z/λ1 > +µ1)−A1φ1(z)

for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn.
Case 2. φ is not affine on Cn.
In this case there exists c ∈ C such that |φ+ c|2 is convex on Cm. Then we have the
representation {

g1(z) = A1c+A2φ1(z)
g2(z) = A2c−A1φ1(z)

for every z ∈ Cn, where φ1 : Cn → C is analytic, |φ1|2 is convex on Cn.

We can discuss the cases (A1, A2 ∈ C\{0}), or (A1 ∈ C\{0}, A2 = 0), or (A1 = 0,
A2 ∈ C\{0}).
This theorem motivates the following questions. Find all the holomorphic represen-
tation of the analytic functions f1, f2, f3 : Cn → C, such that ψ is convex on Cn ×C.
ψ(z, w) = |B1w−f1(z)|2+ |B2w−f2(z)|2+ |B3w−f3(z)|2, for (z, w) ∈ Cn×C, where
(B1, B2, B3) ∈ C3\{0}.
Indeed, for instance, in harmonic analysis and convex analysis, actually the following
question appeared naturally.
Find all the representation of the harmonic functions F1, F2, F3 : C → C, such that ψ1

is convex and strictly 2−sh on C2.Where ψ1(z, w) = |w−F1(z)|2+|w−F2(z)|2+|w−
F3(z)|2, (z, w) ∈ C2. (We study here functions on harmonic representation theory).
Define ψ0(z, w) = |w−F1(z)|2+ |w−F2(z)|2, for (z, w) ∈ C2. If we choose F3 is affine
on C and ψ0 is convex and strictly 2− sh on C2, then we have a family of harmonic
functions which satisfy the above condition.
The proof of this theorem is obvious and analogous to the proof of the following.

Theorem 3. The following conditions are equivalent
(I) u is convex and strictly psh on Cn × Cm;
(II) (A1, A2) ∈ C2\{0}, n = m = 1, there exists c ∈ C such that |φ+ c|2 is convex on
C and we have the following cases.
Case 1. A1A2 ̸= 0. Then{

g1(z) +A1c = A1(az + b) +A2ψ(z)
g2(z) +A2c = A2(az + b)−A1ψ(z)

for each z ∈ C, where a, b ∈ C, ψ : C → C is holomorphic, |ψ| is convex with |ψ′| > 0
and |φ′| > 0 on C.
Case 2. A1 ̸= 0 and A2 = 0.
If φ is affine and nonconstant on C. Then we have the representation{

g1(z) = A1(λz + µ)
g2(z) = −A1φ2(z)
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for each z ∈ C, where λ ∈ C\{0}, µ ∈ C, φ2 : C → C is analytic, |φ2|2 is convex and
strictly subharmonic (sh) on C.
If φ is not affine on C. Then we have the representation{

g1(z) = −A1c
g2(z) = −A1φ3(z)

for every z ∈ C, where φ3 : C → C is analytic, |φ3|2 is convex and strictly subharmonic
on C. In this situation we have φ(w) = e(aw+b) − c, for each w ∈ C, with a ∈ C\{0}
and b ∈ C.
Case 3. A1 = 0 and A2 ̸= 0. (Obviously analogous to case 2).

Proof. (I) implies (II). We choose the following proof which have technical ap-
plications in the case when we study the convexity of the function F, F (z, w) =
|w − ψ1(z)|2N + |w − ψ2(z)|2N , N ∈ N, N ≥ 2, (z, w) ∈ Cn × C, ψ1, ψ2 : Cn → C be
two holomorphic functions. In this situation we prove that ψ1 and ψ2 have analytic
representations using the holomorphic differential equation k′′(k+λ) = γ(k′)2, where
k : C → C is a holomorphic function and λ, γ ∈ C.
If (A1, A2) = (0, 0), then u is independent of w. Thus u is not strictly psh on Cn×Cm.
A contradiction.
The case where A1 ̸= 0 and A2 = 0.
Since u(0, .) is strictly psh on Cm. Then the function |A1φ− g1(0)|2 is strictly psh on

Cm. Thus by lemma 1, m = 1. Since u(., 0) is convex on C, then |φ− g1(0)
A1

|2 is convex

and strictly sh on C. Put c = − g1(0)
A1

. Now |φ + c|2 is convex and strictly sh on C,
therefore, by Abidi [2], we have
φ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C, or
φ(w) = e(a1w+b1) − c, for all w ∈ C, with a1 ∈ C\{0} and b1 ∈ C.
If φ(w) = aw + b, ∀w ∈ C.
Then for each fixed w0 ∈ C, the function u(., w0) is convex on Cn.
Therefore,

| −
n∑

j,k=1

∂2g1
∂zj∂zk

(z)[A1(aw0 + b)− g1(z)]αjαk +

n∑
j,k=1

∂2g2
∂zj∂zk

(z)g2(z)αjαk|

≤ |
n∑
j=1

∂g1
∂zj

(z)αj |2 + |
n∑
j=1

∂g2
∂zj

(z)αj |2,

for each z ∈ Cn, w0 ∈ C and α = (α1, ..., αn) ∈ Cn.
Since the right hand side of the above inequality is independent of w0 ∈ C, it follows
that for every fixed z ∈ Cn,

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk = 0, for all α = (α1, ..., αn) ∈ Cn.

Therefore g1 is affine on Cn.
Put g1(z) = A1(< z/γ > +δ), for z ∈ Cn, where γ ∈ Cn and δ ∈ C.
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Let T : Cn × C → Cn × C, T (z, w) = (z, w + g1(z)
A1a

− δ
a ), for (z, w) ∈ Cn × C.

Note that T is a C linear bijective transformation on Cn × C.
Since u is convex and strictly psh on Cn × C, then ψ is convex and strictly psh
on Cn × C, where ψ(z, w) = u oT (z, w) = |A1(aw + b − δ)|2 + |g2(z)|2, for every
(z, w) ∈ Cn × C.
But ψ is convex and strictly psh on Cn × C, then |g2|2 is convex and strictly psh on
Cn. Thus n = 1.
Put g2(z) = −A1φ2(z), for z ∈ C (φ2 is analytic on C). Thus |φ2|2 is convex and
strictly sh on C.
(II) implies (I). Obvious.

Question. Let B1, B2 ∈ C\{0}. For f1, f2 : Cn → C, define ψ(z, w) = |B1w −
f1(z)|2 + |B2w − f2(z)|2, (z, w) ∈ Cn × C. Find all the pluriharmonic (respectively
n− harmonic) functions f1, f2 : Cn → C, such that ψ is convex (respectively convex
and strictly n− subharmonic) on Cn × C.

Theorem 4. The following conditions are equivalent
(I) u1 is convex and strictly psh on Cn × Cm;
(II) m = 1, n ∈ {1, 2}, (A1, A2) ∈ C2\{0}, there exists c ∈ C such that |φ + c|2 is
convex on C and we have the following cases.
Case 1. For all w ∈ C, φ(w) = aw + b, where a ∈ C\{0} and b ∈ C.
We have the representation{

g1(z) = A1(< z/λ1 > +µ1) +A2φ1(z)
g2(z) = A2(< z/λ1 > +µ1)−A1φ1(z)

for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn, such that
(n = 1, λ1 ̸= 0), or
(n = 1, λ1 = 0, ∂φ1

∂z (z) ̸= 0, for each z ∈ C), or
n = 2, (λ1, (

∂φ1

∂z1
(z), ∂φ1

∂z2
(z))) is a basis of the complex vector space C2,

for each z = (z1, z2) ∈ C2.
Case 2. For every w ∈ C, φ(w) = e(aw+b) − c, where a ∈ C\{0} and b ∈ C.
Then n = 1 and we have the representation{

g1(z) = −A1c+A2ψ1(z)
g2(z) = −A2c−A1ψ1(z)

for each z ∈ C, where ψ1 : C → C is analytic, |ψ1|2 is convex and strictly sh on C.

The proof follows from the above 3 theorems and lemma 1.
We have

Corollary 1. The following conditions are equivalent
(I) u is convex on Cn × Cm and u2 is strictly psh on Cn × Cm;
(II) u is convex on Cn × Cm and u1 is strictly psh on Cn × Cm;
(III) (A1, A2) ∈ C2\{0}, m = 1, n ∈ {1, 2}, there exists c ∈ C such that |φ + c|2 is
convex and strictly sh on C and we have the following 2 cases.
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Case 1. For all w ∈ C φ(w) = aw + b, (a ∈ C\{0}, b ∈ C).
Then we have the holomorphic representation{

g1(z) = A1(< z/λ1 > +µ1) +A2φ1(z)
g2(z) = A2(< z/λ1 > +µ1)−A1φ1(z)

for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn, such that
(n = 1, λ1 ̸= 0), or (n = 1, λ1 = 0, ∂φ1

∂z (z) ̸= 0, for each z ∈ C), or
(n = 2 and (λ1, (

∂φ1

∂z1
(z), ∂φ1

∂z2
(z))) is a basis of the complex vector space C2,

for every z = (z1, z2) ∈ C2).
Case 2. For all w ∈ C, φ(w) = e(aw+b) − c, where a ∈ C\{0} and b ∈ C.
Then n = 1 and we have the holomorphic representation{

g1(z) = −A1c+A2ψ1(z)
g2(z) = −A2c−A1ψ1(z)

for every z ∈ C, where ψ1 : C → C is analytic, |ψ1|2 is convex and strictly sh on C.

Proof. (I) implies (III). Note that u, u1 and u2 are functions of class C
∞ on Cn×Cm.

We have
u2 is strictly psh on Cn × Cm if and only if u1 is strictly psh on Cn × Cm.
Assume that (A1, A2) = (0, 0). Then u1 is independent of w ∈ Cm and u1 is strictly
psh on Cn × Cm. A contradiction.
Consequently, (A1, A2) ∈ C2\{0}.
Define u3(z, w) = (|A1|2 + |A2|2)|φ(w)|2 + |g1(z)|2 + |g2(z)|2, (z, w) ∈ Cn × Cm.
Then u3 is a function of class C∞ on Cn × Cm. But u1 is strictly psh on Cn × Cm if
and only if u3 is strictly psh on Cn × Cm.
By lemma 1, we have m = 1 and n ≤ 2.

Now u(0, .) is convex on C and u3(0, .) is strictly sh on C. In fact (|A1φ−g1(0)|2+
|A2φ− g2(0)|2) is convex on C and ((|A1|2+ |A2|2)|φ|2+ |g1(0)|2+ |g2(0)|2) is strictly
sh on C. Then there exists c ∈ C such that |φ+ c|2 is convex on C and |φ|2 is strictly
sh on C. Which yields |φ+ c|2 is convex and strictly sh on C.
By Abidi [2], using the holomorphic differential equation k′′(k+ c) = γ(k′)2 (k : C →
C be a holomorphic function , γ, c ∈ C), we have
φ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C, or
φ(w) = e(a1w+b1) − c, for all w ∈ C, with a1 ∈ C\{0} and b1 ∈ C.
The rest of the proof is now obvious.

Theorem 5. The following conditions are equivalent
(I) v is convex and strictly psh on Cn × Cm;
(II) m = 1, n ∈ {1, 2}, (A1, A2) ∈ C2\{0}, there exists c ∈ C such that |φ + c|2 is
convex and strictly sh on C and we have the following 2 cases.
Case 1. For all w ∈ C, φ(w) = aw + b, (a ∈ C\{0}, b ∈ C).
Then we have the representation{

g1(z) = A1(< z/λ > +µ) +A2φ1(z)
g2(z) = A2(< z/λ > +µ)−A1φ1(z)
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for each z ∈ Cn, where λ ∈ Cn, µ ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn, such that
(n = 1, λ ̸= 0), or (n = 1, λ = 0, ∂φ1

∂z (z) ̸= 0, for every z ∈ C), or
(n = 2, and (λ, (∂φ1

∂z1
(z), ∂φ1

∂z2
(z))) is a basis of the complex vector space C2,

for any z = (z1, z2) ∈ C2).
Case 2. For each w ∈ C, φ(w) = e(aw+b) − c, (a ∈ C\{0} and b ∈ C).
Then n = 1 and we have the representation{

g1(z) = −A1c+A2ψ1(z)
g2(z) = −A2c−A1ψ1(z)

for every z ∈ C, where ψ1 : C → C is analytic, |ψ1|2 is convex and strictly sh on C.

Moreover, we can consider the function v2 for a study. According to lemma 1, we
obtain several holomorphic representations of g1 and g2 from the assumptions v and
v1 are convex on Cn × Cm and v2 = (v + v1) is strictly psh on Cn × Cm.

3. Some study in the theory of convex and strictly
psh functions

3.1. The analysis of strictly convex functions

Put u(z, w) = |φ1(w)−g1(z)|2+|φ2(w)−g2(z)|2, φ1, φ2 : Cm → C and g1, g2 : Cn → C
be four holomorphic functions, (z, w) ∈ Cn × Cm.
Recall that, for two holomorphic functions φ : Cm → C and g : Cn → C, if we denote
ψ(z, w) = |φ(w)− g(z)|2, for (z, w) ∈ Cn×Cm. ψ is not strictly convex at each point
of Cn × Cm (this is the case of one absolute value of a holomorphic function). But,
if we consider the sum of two absolute values of holomorphic functions, there exists
several cases where ψ1 is strictly convex on C2. For example

ψ1(z, w) = |f1(w)− k1(z)|2 + |f2(w)− k2(z)|2

for (z, w) ∈ C2 and f1(w) = w, f2(w) = 2w + 1, k1(z) = 2z, k2(z) = 0.
Before the two above technical remarks, we pose the following question.
Question. Characterize all the holomorphic functions φ1, φ2, g1, g2 such that u is
strictly convex on Cn × Cm (we prove that n = m = 1).

Remark 1. Let F1(z) = z2, F2(z) = −z2, F3(z) = z, K1(w) = K2(w) = K3(w) = w,
(z, w) ∈ C2. F1, F2, F3,K1,K2,K3 are holomorphic functions on C. Put u(z, w) =
|K1(w) − F1(z)|2 + |K2(w) − F2(z)|2 + |K3(w) − F3(z)|2. Observe that u is strictly
convex on C2, but F1 and F2 are not affine functions.

We begin by

Lemma 2. Let f1, f2 : CN → C be two holomorphic functions, N ≥ 1. Put v =
|f1|2 + |f2|2. We have
If v is strictly psh on CN , then N ≤ 2.
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Using the holomorphic differential equation k′′(k + c) = γ(k′)2, for k : C → C be a
holomorphic function and (γ, c) ∈ C2, we have

Lemma 3. Let g1, g2 : Cn → C and φ2 : Cm → C be three holomorphic functions
and a ∈ C.
Put u(z, w) = |g1(z)− a|2 + |φ2(w)− g2(z)|2, for (z, w) ∈ Cn × Cm.
Then u is strictly convex on Cn × Cm if and only if n = m = 1, g1 is affine noncon-
stant, g2 is affine and φ2 is affine nonconstant on C.

Proof. Assume that u is strictly convex on Cn × Cm. By lemma 2, it follows that
n = m = 1. We have

|φ′′
2(w)(φ2(w)− g2(z))| < |φ′

2(w)|2

for each w ∈ C and for every fixed z ∈ C.
Put ψ2(w) = |φ2(w) − g2(z)|2, for w ∈ C. By Abidi [2], for each fixed z ∈ C, the
function ψ2 is strictly convex in C. Then φ2 is affine nonconstant on C, (see [2], [3]).
Now we have the inequality

|g′′2 (z)(g2(z)− φ2(w)) + g′′1 (z)g1(z)| < |g′1(z)|2 + |g′2(z)|2

for each (z, w) ∈ C2. Therefore the function F (w) = g′′2 (z)φ2(w) is holomorphic and
bounded on C, for every fixed z ∈ C. Therefore F is constant on C, for each fixed
z ∈ C.
Since φ2 is affine nonconstant, it follows that g′′2 = 0 on C. Then g2 is affine on C.
Now write φ2(w) = A2w + B2, g2(z) = a2z + b2, A2 ∈ C\{0}, B2, a2, b2 ∈ C. Let
T (z, w) = (z, w + a2

A2
z + b2

A2
).

Thus T is an affine holomorphic transformation and bijective on C2. Then u1 = u oT
is strictly convex on C2 and u oT (z, w) = |g1(z)− a|2 + |φ2(w)|2 = u1(z, w).
Consequently, g1 is affine nonconstant on C.
The converse is obvious and the proof is complete.

Now let ψ1, ψ2, f1, f2, k : C → C be holomorphic functions and γ, c ∈ C. Using the
holomorphic differential equation k′′(k + c) = γ(k′)2 and the two partial differential
equations ψ′′

1 (w)f
′
1(z) + ψ′′

2 (w)f
′
2(z) = 0, f ′′1 (z)ψ

′
1(w) + f ′′2 (z)ψ

′
2(w) = 0 on C2, we

prove

Theorem 6. Let φ1, φ2 : Cm → C and g1, g2 : Cn → C be four holomorphic
functions. Put u(z, w) = |φ1(w)− g1(z)|2 + |φ2(w)− g2(z)|2, (z, w) ∈ Cn × Cm.
The following assertions are equivalent
(I) u is strictly convex on Cn × Cm;
(II) n = m = 1, g1, g2, φ1, φ2 are affine functions on C and satisfying the condition
(g′1φ

′
2 − g′2φ

′
1) ̸= 0.

Proof. We have n = m = 1, because u is strictly psh on Cn ×Cm. Since u is strictly
convex on Cn × Cm, then the function u(z, .) is strictly convex on C, for each z ∈ C.
Therefore,

|φ′′
1(w)(φ1(w)− g1(z)) + φ′′

2(w)(φ2(w)− g2(z))| < |φ′
1(w)|2 + |φ′

2(w)|2
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for each w ∈ Cm and for every fixed z ∈ Cn. Thus, for every fixed w ∈ C, the
holomorphic function on the variable z, defined by F (z) = (g1(z)φ′′

1(w)+g2(z)φ
′′
2(w))

is bounded on C.
By Liouville theorem, F is constant on C. Thus (g′1(z)φ

′′
1(w) + g′2(z)φ

′′
2(w)) = 0,

for every z, w ∈ C.
We discuss the cases φ′′

1 ̸= 0 or φ′′
2 ̸= 0 on C. (Also we have (φ′

1(w)g
′′
1 (z) +

φ′
2(w)g

′′
2 (z)) = 0 on C2).

Assume that φ′′
1 ̸= 0 and φ′′

2 ̸= 0. Therefore

φ′′
1(w)

φ′′
2(w)

= −g
′
2(z)

g′1(z)
= R, R ∈ C.

Thus, φ′′
1(w) = Rφ′′

2(w) and g′2(z) = −Rg′1(z), for each z, w ∈ C. It follows that
φ1(w) = Rφ2(w) + aw + b and g2(z) = −Rg1(z) + λ, a, b, λ ∈ C.
The function F1 is strictly convex on C2, where

F1(z, w) = |Rφ2(w) + aw + b− g1(z)|2 + |φ2(w) +Rg1(z)− λ|2.

This proves |g1 + ξ1|2 is strictly convex on C, where ξ1 ∈ C.
By the holomorphic differential equation k′′(k + c) = γ(k′)2, (k : C → C be a holo-
morphic function and c, γ ∈ C), we have g1 is affine nonconstant on C. Therefore,
|g1 − φ1|2 + |Rg1 − (λ− φ2)|2 is strictly convex on C2.
By theorem 2, φ1 and φ2 are affine functions. A contradiction.
Consequently, φ′′

1 = 0, or φ′′
2 = 0 on C.

Assume that φ′′
1 ̸= 0 and φ′′

2 = 0 on C. Therefore φ′′
1g

′
1 = 0 on C. Thus g′1 = 0 on C

and then g1 is constant on C. We have |φ1 − g1(0)|2 + |φ2 − g2|2 is strictly convex
on C2. By lemma 3, we have φ1 and g2 are affine nonconstant, φ2 is affine on C.
Therefore φ1 is affine nonconstant on C. A contradiction.
Consequently, φ1 and φ2 are affine functions on C.
Now since the function u(., w) is strictly convex on C (for each fixed w ∈ C), then
g1, g2, φ1 and φ2 satisfy the partial differential equation g′′1φ

′
1 + g′′2φ

′
2 = 0 in C2.

Using the last above partial differential equation, we prove that g1 and g2 are affine
functions on C. Note that if φ1 and g1 are constant functions, then |g2−φ2|2 is strictly
convex on C2. This is impossible.
Therefore, we have
(φ1 or g1 is non constant) and (φ2 or g2 is non constant).
Analogously,
(g1 or g2 is non constant) and (φ1 or φ2 is non constant).
Since now u is strictly convex on C2, then

|φ′
1(w)β − g′1(z)α|2 + |φ′

2(w)β − g′2(z)α|2 > 0

for each (z, w) ∈ C2 and (α, β) ∈ C2\{0}. Therefore, (g′1φ′
2 − g′2φ

′
1) ̸= 0.
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3.2. The analysis of convex and strictly psh functions

Let ψ1, ψ2, f1, f2, k : C → C be holomorphic functions and γ, c ∈ C. In the sequel,
using the holomorphic differential equation k′′(k + c) = γ(k′)2 and the two partial
differential equations ψ′′

1 (w)f
′
1(z)+ψ

′′
2 (w)f

′
2(z) = 0, f ′′1 (z)ψ

′
1(w)+f

′′
2 (z)ψ

′
2(w) = 0 on

C2, we have

Theorem 7. Let g1, g2 : Cn → C and φ1, φ2 : Cm → C be four holomorphic
functions. Put u(z, w) = |φ1(w)− g1(z)|2 + |φ2(w)− g2(z)|2, for (z, w) ∈ Cn × Cm.
The following conditions are equivalent
(I) u is convex and strictly psh on Cn × Cm;
(II) n = m = 1, φ′′

1g
′
1 + φ′′

2g
′
2 = 0 and g′′1φ

′
1 + g′′2φ

′
2 = 0 on C2,

(φ1 or φ2 is nonconstant) and (g1 or g2 is nonconstant) and we have the following
cases.
Case 1. The functions φ1 and φ2 satisfies φ′′

1 ̸= 0 and φ′′
2 ̸= 0.

Assume that g′1 ̸= 0.
If g′′1 = 0, then g′′2 = 0 on C (therefore g1 and g2 are affine functions with g1 or g2
is non constant. In this case, by theorem 2 or theorem 3, we can find φ1 and φ2 by
their holomorphic expressions).
If g′′1 ̸= 0. Thus g′′2 ̸= 0. Since u(z, .) is convex on C (for z fixed), then φ2 = cφ1 + ξ0,
c, ξ0 ∈ C.
u = |φ1 − g1|2 + |cφ1 + ξ0 − g2|2, on C2.
Assume that g′2 ̸= 0.
We have an analogous situation to the above case.
Case 2. The function φ1 is not affine and the function φ2 is affine on C.
Then g1 is constant on C, |φ1 − g1(0)|2 and |g2 − φ2(0)|2 are convex functions and
|φ′

1g
′
2| > 0 on C2, or

g2 is affine nonconstant and |φ′
1g

′
2| > 0 on C2.

We can study also the case φ′′
1 = 0 and φ′′

2 ̸= 0.
Case 3. The functions φ1 and φ2 are affine on C.
The discussion is similar to cases 1, 2 and theorem 3.

Proof. (I) implies (II). By lemma 2, we have 2 ≤ n+m ≤ 2. Then n = m = 1. Since
u is convex and of class C2 on C2, we have the inequality

| ∂
2u

∂w2
β2 +

∂2u

∂z2
α2 +

∂2u

∂z∂w
αβ| ≤ ∂2u

∂w∂w
|β|2 + ∂2u

∂z∂z
|α|2 + 2Re(

∂2u

∂z∂w
αβ)

on C2. It follows that

|[φ′′
1(φ1−g1)+φ′′

2(φ2−g2)]β2+[g′′1 (g1−φ1)+g
′′
2 (g2−φ2)]α

2| ≤ |φ′
1β−g′1α|2+|φ′

2β−g′2α|2

for each (α, β) ∈ C2. If α = 0 and β ̸= 0, then

|φ′′
1(φ1 − g1) + φ′′

2(φ2 − g2)| ≤ |φ′
1|2 + |φ′

2|2

on C2. Now let ψ(z) = g1(z)φ′′
1(w) + g2(z)φ′′

2(w) − φ1(w)φ′′
1(w) − φ2(w)φ′′

2(w), for
z ∈ C, (w is fixed on C). ψ is holomorphic on C and ψ(z)| ≤ |φ′

1(w)|2 + |φ′′
2(w)|2, for
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every z ∈ C, (w fixed). Thus ψ is constant on C. Consequently, ψ′(z) = 0, for each
z ∈ C. Therefore

g′1(z)φ
′′
1(w) + g′2(z)φ

′′
2(w) = 0

for each z, w ∈ C.
Now if α ̸= 0 and β = 0. We obtain φ′

1(w)g
′′
1 (z) + φ′

2(w)g
′′
2 (z) = 0, for every (z, w) ∈

C2.
For the rest of the proof we use theorem 1, theorem2, theorem 3 and the proof of
theorem 7.

Remark 2. Using the above technical methods, the following three partial differen-
tial equations

k′′(k + c) = γ(k′)2,

ψ′′
1 (w)f

′
1(z) + ψ′′

2 (w)f
′
2(z) = 0 on C2,

f ′′1 (z)ψ
′
1(w) + f ′′2 (z)ψ

′
2(w) = 0 on C2,

where (ψ1, ψ2, f1, f2, k : C → C are holomorphic functions and γ, c ∈ C), we can solve
the analogous problem when u is convex on Cn×Cm and u = |φ1 − g1|2 + |φ2 − g2|2;
φ1, φ2 : Cm → C and g1, g2 : Cn → C are four holomorphic functions with the
conditions (φ1 or φ2 is nonconstant) and (g1 or g2 is nonconstant).

3.3. Essential properties in function theory

In the sequel, we give technical tools for the study of the following families of functions
consisting of: convex and not strictly psh functions on any not empty Euclidean open
ball subset of Cn × C; convex and strictly sh functions but not strictly psh on each
Euclidean open ball; convex and n− strictly sh functions but not strictly psh on every
open ball,... . We have

Theorem 8. Let u : D → R be a function of class C2, D is a domain of Cn, n ≥ 1.
The following conditions are equivalent
(I) u is not strictly psh on each not empty Euclidean open ball subset of D;
(II) u is not strictly psh at each point of D.

Example. Let v(z, w) = |wN − g1(z)|2 + |wN − g2(z)|2, n,N ∈ N, n,N ≥ 2, g1, g2 :
Cn → C be two holomorphic functions. v is convex and not strictly psh at each point
of Cn × C, if for example g2(z) = −g1(z), for each z ∈ Cn and |g1|2 is convex on Cn.

Remark 3. (R1). Let u1(z, w) = |w − z|2, u2(z, w) = |w − 2z|2, (z, w) ∈ C2.
u1 and u2 are C

∞ and not strictly psh functions at each point of C2. But u = (u1+u2)
is strictly psh on C2.
(R2). Put v(z) =∥ z ∥4, z = (z1, ..., zn) ∈ Cn. v is psh on Cn and strictly psh on
Cn\{0}. Therefore v is strictly psh almost everywhere on Cn. But v is not strictly
psh on Cn.

Example. Let u = (u1 + u2), v = (v1 + v2), where

u1(z, w) = |w − f1(z)|2 + |w − f2(z)|2,
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u2(z, w) = |w − g1(z)|2 + |w − g2(z)|2,

v1(z, w) = |w − f1(z)|2 + |w − f2(z)|2,

v2(z, w) = |w − g1(z)|2 + |w − g2(z)|2,

f1(z) = −f2(z) = (z − z2), g1(z) = −g2(z) = (z + z2), for (z, w) ∈ C2.

f1, f2, g1, g2 are holomorphic functions on C. We have u and v are strictly convex
functions on C2. But u1, u2, v1, v2 are not convex functions on C2.

Example. Let N ∈ N, N ≥ 2 and A ∈ R+, A ≥ 2 such that ψ is convex on
C, ψ(z) = A|z|2 + |zN − 1|2, for z ∈ C. Put u = (u1 + u2), where u1(z, w) =
|w − g1(z)|2 + |w − g2(z)|2, u2(z, w) = |w − g1(z)|2 + |w − g2(z)|2,
g1(z) = Az + (zN − 1), g2(z) = Az − (zN − 1), for (z, w) ∈ C2.
Note that g1 and g2 are holomorphic functions on C. We have u1 is not strictly psh
and not convex on C2. u2 is strictly psh and not convex on C2. But u is convex and
strictly psh on C2.
We have

Proposition 1. Let g1, g2 : C → C be two holomorphic functions. Put u(z, w) =
|w− g1(z)|4 + |w− g2(z)|4, v(z, w) = |w− g1(z)|4 + |w− g2(z)|4, for (z, w) ∈ C2. We
have u is not strictly psh on C2, for each tuple of holomorphic functions g1 and g2.
But there exists several cases where v is strictly psh on C2.

Proof. u and v are functions of class C∞ on C2. The hermitian Levi form of u
is L(u)(z, w)(α, β) = 4|w − g1(z)|2|β − g′1(z)α|2 + 4|w − g2(z)|2|β − g′2(z)α|2, for
(z, w) ∈ C2, (α, β) ∈ C2.
Let z0 ∈ C. Put w0 = g1(z0). Let β = g′2(z0)α, for α ∈ C\{0}.
Then L(u)(z0, w0)(α, g

′
2(z0)α) = 0 and α ̸= 0.

The hermitian Levi form of v is
L(v)(z, w)(α, β) = (2|g′1(z)|2|w−g1(z)|2+2|g′2(z)|2|w−g2(z)|2)|α|2+(2|w−g1(z)|2+
2|w− g2(z)|2)|β|2+2|g′1(z)(w− g1(z))α− (w− g1(z))β|2+2|g′2(z)(w− g2(z))α− (w−
g2(z))β|2, for (z, w), (α, β) ∈ C2. Now choose |g′1| > 0, |g′2| > 0 and |g1−g2| > 0 on C.
Let (z, w) ∈ C2. We discuss the following three cases (α ̸= 0, β = 0), (α = 0, β ̸= 0))
and (α ̸= 0, β ̸= 0), we obtain L(v)(z, w)(α, β) > 0 if (α, β) ∈ C2\{0}.
Then v is strictly psh on C2.
Let ψ(z, w) = |w − ψ1(z)|2 + |w − ψ2(z)|2 + |w − ψ3(z)|2,
φ(z, w) = |w−ψ1(z)|2+ |w−ψ2(z)|2+ |w−ψ3(z)|2, for (z, w) ∈ C2, where ψ1, ψ2, ψ3 :
C → C are three holomorphic functions. Recall that if ψ is strictly psh on C2, then
φ is strictly psh on C2. But we have

Proposition 2. There exists three holomorphic functions g1, g2, g3 : C → C such
that if we define u(z, w) = |w − g1(z)|4 + |w − g2(z)|4 + |w − g3(z)|4 and v(z, w) =
|w− g1(z)|4 + |w− g2(z)|4 + |w− g3(z)|4, for (z, w) ∈ C2. We have u is convex on C2

and strictly psh on a neighborhood of (0, i). But v is not strictly psh at (0, i), while v
is convex on C2.

Example. Let g1(z) = z − i, g2(z) = 2z − i, g3(z) = 3z − i, z ∈ C. g1, g2 and g3 are
holomorphic functions on C.
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z0 = 0, w0 = i. Put u(z, w) = |w − g1(z)|4 + |w − g2(z)|4 + |w − g3(z)|4,
v(z, w) = |w − g1(z)|4 + |w − g2(z)|4 + |w − g3(z)|4, for (z, w) ∈ C2.
Then u and v are functions of class C∞ and convex on C2.
Let ψ(z, w) = |w − g1(z)|4, (z, w) ∈ C2. ψ is a C∞ function on C2 and the hermitian
Levi form of ψ is

L(ψ)(z, w)(α, β) = 4|w − g1(z)|2|β − g′1(z)α|2, (α, β) ∈ C2.

Denote by L(u)(z, w)(α, β) the hermitian Levi form of u at (z, w) and (α, β). Then
L(u)(z0, w0)(α, β) = 16|β−α|2+16|β−2α|2+16|β−3α|2 = 0 implies that α = β = 0.
Thus L(u)(z0, w0)(α, β) > 0, for each (α, β) ∈ C2\{0}.
Let S = {(α, β) ∈ C2 / |α|2 + |β|2 = 1}. Thus {(z0, w0)} × S = K is a compact on
C2 × C2.
The function F, defined by

F (z, w)(α, β) =
∂2u

∂z∂z
(z, w)|α|2 + ∂2u

∂w∂w
(z, w)|β|2 + 2Re(

∂2u

∂z∂w
(z, w)αβ),

is continuous on C2 × C2.
Since F > 0 on K, then F > 0 on B((z0, w0), r) × S, where r > 0. Therefore u is
strictly psh on a neighborhood of (0, i) and convex on C2.
The hermitian Levi form of the C∞ function θ on C2 is

L(θ)(z, w)(α, β) = 2|g′1(z)(w − g1(z))α− (w − g1(z))β|2 + 2|g′1(z)(w − g1(z))α|2

+ 2|w − g1(z)|2|β|2,

for (z, w), (α, β) ∈ C2, where θ(z, w) = |w − g1(z)|4.
Observe that we have w0 − g1(z0) = w0 − g2(z0) = w0 − g3(z0) = 0. Therefore
L(v)(z0, w0)(α, β) = 0, for each (α, β) ∈ C2.

We have the following technical remark.

Remark 4. Let f1, ..., fN : Cn → C be holomorphic functions, n,N, k ∈ N\{0},
k ≥ 2. Put

u(z, w) = |w − f1(z)|2k + ...+ |w − fN (z)|2k,

v(z, w) = |w − f1(z)|2k + ...+ |w − fN (z)|2k,

u1(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,

v1(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,

φ = (u+ v) and φ1 = (u1 + v1).

If u is strictly psh on Cn × C, we can not deduce that v is strictly psh on Cn × C.
If φ is strictly psh on Cn × C, we can not conclude that u (or v) is strictly psh on
Cn × C.
But we have the technical properties.
(I) If u is strictly psh on Cn × C, then u1 is strictly psh on Cn × C.
(II) v is strictly psh on Cn × C implies that v1 is strictly psh on Cn × C.
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(III) If φ1 is strictly psh on Cn × C, then v1 is strictly psh on Cn × C.
(IV) If φ is strictly psh on Cn × C, then φ1 is strictly psh on Cn × C.
(V) (u+ u1) is strictly psh on Cn × C, implies that u1 is strictly psh on Cn × C.
For example for the proof of the above property (I), since
u(z, w) = |(w − f1(z))

k|2 + ...+ |(w − fN (z))k|2, then u is a function of class C∞ on
Cn × C. Therefore the hermitian Levi form of u is

L(u)(z, w)(α, β) = |w − f1(z)|2k−2|β −
n∑
j=1

∂f1
∂zj

(z)αj |2 + ...

+ |w − fN (z)|2k−2|β −
n∑
j=1

∂fN
∂zj

(z)αj |2

for z = (z1, ..., zn) ∈ Cn, w ∈ C, α = (α1, ..., αn) ∈ Cn, β ∈ C.
Now u1 is a function of class C∞ on Cn × C. The hermitian Levi form of u1 is

L(u1)(z, w)(α, β) = |β −
n∑
j=1

∂f1
∂zj

(z)αj |2 + ...+ |β −
n∑
j=1

∂fN
∂zj

(z)αj |2.

Let (z, w), (α, β) ∈ Cn × C. Observe that L(u)(z, w)(α, β) > 0 implies that

L(u1)(z, w)(α, β) > 0, because the absolute value |β −
n∑
j=1

∂fs
∂zj

(z)αj |2 ≥ 0, for each

s ∈ {1, ..., N}.
The technical properties (II), (III), (IV) and (V) can be be proved similarly.
Observe that for ψ : Cn → R+, if ψ

2 is convex on Cn, then ψ4 is convex on Cn. The
converse, for instance, is in general not true. But in the sequel, using the holomorphic
differential equation, k′′(k+ c) = γ(k′)2 (k : C → C be holomorphic and c, γ ∈ C), we
have

Theorem 9. Let g1, g2 : Cn → C be two holomorphic functions. Put u(z, w) =
|w− g1(z)|2 + |w− g2(z)|2, v(z, w) = |w− g1(z)|4 + |w− g2(z)|4, for (z, w) ∈ Cn ×C.
We have
(I) Assume that v is convex on Cn × C, then u is convex on Cn × C.
(II) Suppose that u is convex on Cn × C, we can not conclude that v is convex on
Cn × C.

Proof. (I). Note that u and v are functions of class C∞ on Cn × C.
Assume that n = 1. We have

|∂
2v

∂z2
(z, w)α2 +

∂2v

∂w2
β2 + 2

∂2v

∂z∂w
αβ| ≤ L(v)(z, w)(α, β)

for each (z, w), (α, β) ∈ C2, where

L(v)(z, w)(α, β) =
∂2v

∂z∂z
(z, w)|α|2 + ∂2v

∂w∂w
|β|2 + 2Re(

∂2v

∂z∂w
αβ).
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We obtain the inequality
(E): |[−2g′′1 (z)w + 2g1(z)g

′′
1 (z) + 2(g′1(z))

2](w2 − 2g1(z)w + g1
2(z))α2+

[−2g′′2 (z)w + 2g2(z)g
′′
2 (z) + 2(g′2(z))

2](w2 − 2g2(z)w + g2
2(z))α2 + 2(w − g1(z))

2β2+
2(w − g2(z))

2β2 − 2g′1(z)(w − g1(z))
2αβ − 2g′2(z)(w − g2(z))

2αβ| ≤
|2wβ−2βg1(z)−2wg′1(z)α+2g′1(z)g1(z)α|2+|2wβ−2βg2(z)−2wg′2(z)α+2g′2(z)g2(z)α|2,
for each (z, w), (α, β) ∈ C2.
If β = 0 and w ∈ R, the coefficient of w3 is equal to 0. Therefore (g′′1 (z) + g′′2 (z)) = 0,
for every z ∈ C.
Now we divide the left hand side of the inequality (E) by |w|2 > 0 (for w ∈ C\{0})
and the right hand side of (E) by |w|2 (observe that |w|2 = |w|2), and letting |w| go
to (+∞), we obtain

|(4g′′1 (z)g1(z) + 4g′′2 (z)g2(z) + 2(g′1(z))
2 + 2(g′2(z))

2)α2 + 4β2 − 4(g′1(z) + g′2(z))αβ|

≤ |2β − 2g′1(z)α|2 + |2β − 2g′2(z)α|2.

Put β = g′1(z)α. Then

|4g′′1 (z)g1(z) + 4g′′2 (z)g2(z) + 2(g′1(z)− g′2(z))
2| ≤ 4|g′1(z)− g′2(z)|2.

Thus
|g′′1 (z)(g1(z)− g2(z))|2 ≤ 6|g′1(z)− g′2(z)|2

for each z ∈ C. Now also we prove that

|g′′2 (z)(g1(z)− g2(z))| ≤ 6|g′1(z)− g′2(z)|2

for every z ∈ C. Using the triangle inequality, we have then

|g′′1 (z)(g1(z)− g2(z))− g′′2 (z)(g1(z)− g2(z))| ≤ 12|g′1(z)− g′2(z)|2

for each z ∈ C.
Therefore the function (g1 − g2) satisfies

|(g′′1 (z)− g′′2 (z))(g1(z)− g2(z))| ≤ 12|g′1(z)− g′2(z)|2

for every z ∈ C. Therefore the function |g1 − g2|2 is convex on C, by Abidi [2],
(we can see [3]).
Since (g1 + g2) is affine on C, thus g1(z) = (az + b) + φ(z), g2(z) = (az + b) − φ(z),
for each z ∈ C, where φ : C → C is a holomorphic function such that |φ| is convex on
C. Therefore u is convex on C2.
In the sequel, we can prove that g1 and g2 are affine functions on C (see proposition 3).
Assume that n ≥ 2. Actually by the above case, it is easy to prove that g1 and g2
are affine functions on every complex line L ⊂ Cn. Therefore, g1 and g2 are affine
functions on Cn.
(II). Assume that n = 1. Put g1(z) = z2, g2(z) = −z2, for z ∈ C. Then

u(z, w) = |w − g1(z)|2 + |w − g2(z)|2 = 2|w|2 + 2|z|2, (z, w) ∈ C2.
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Thus u is convex on C2. But v is not convex on C2, because v(z, 1) = |1 − z2|4+
+|1 + z2|4 = 2ψ(z), for each z ∈ C. Observe that ψ is not convex in a neighborhood
of 1

2 .

Proposition 3. Let u(z, w) = |w+ < z/a > +b+φ(z)|4 + |w+ < z/a > +b−φ(z)|4,
a ∈ Cn, b ∈ C, φ : Cn → C be holomorphic not affine, |φ| is convex on Cn.
Then the function u is not convex on Cn × C.

Proof. Define v(z, w) = |w + φ(z)|4 + |w − φ(z)|4, (z, w) ∈ Cn × C. Observe that v
is convex on Cn × C if and only if u is convex on Cn × C.
Suppose that n = 1. Since φ is not affine and |φ| is convex on C, then by Abidi [3],
we have the holomorphic representations
φ(z) = (a1z + b1)

k, for each z ∈ C, where a1 ∈ C\{0}, b1 ∈ C, k ∈ N, k ≥ 2, or
φ(z) = e(a2z+b2), for every z ∈ C, with a2 ∈ C\{0} and b2 ∈ C.
Now for the study of the convexity of the function v, by an affine change of variable,
we can assume that φ(z) = zk, for any z ∈ C, or φ(z) = ez, for each z ∈ C.
(I) Assume that φ(z) = zk, k ∈ N, k ≥ 2.
If k = 2. We can see the above proof and we have the function F = v(., 1) is not
convex on C.
Now suppose that k ≥ 3.
Define ψ(z) = v(z, 1), for z ∈ C. Then ψ is a function of class C∞ on C.
If ψ is convex on C, then ∣∣∣∣∂2ψ∂z2 (z)

∣∣∣∣ ≤ ∂2ψ

∂z∂z
(z)

for each z ∈ C.

∂2ψ

∂z2
(z) = [2k2z2k−2 + 2k(k − 1)zk−2(1 + zk)](1 + zk)2

+ [2k2z2k−2 + 2k(k − 1)zk−2(zk − 1)](zk − 1)2.

∂2ψ

∂z∂z
(z) = 4k2|z2k−2|1 + zk|2 + 4k2|zk − 1|2|z|2k−2.

For z0 = 1, ∂
2ψ
∂z2 (1) = 4(6k2 − 4k) ≥ 0 and ∂2ψ

∂z∂z (1) = 16k2. Then ∂2ψ
∂z2 (1) = |∂

2ψ
∂z2 (1)| ≤

∂2ψ
∂z∂z (1). Therefore 6k2 − 4k ≤ 4k2 and k ≥ 3. This is a contradiction.
(II) Assume that φ(z) = ez, for z ∈ C.
Let ψ(z) = v(z, 2), z ∈ C. ψ is a function of class C∞ on C.

∂2ψ

∂z2
(z) = 2(2ez + 2e2z)(2 + ez)2 + 2(2e2z − 2ez)(ez − 2)2.

∂2ψ

∂z∂z
(z) = 4e(z+z)(ez + 2)(ez + 2) + 4e(z+z)(ez − 2)(ez − 2).

∂2ψ
∂z2 (0) = 72 and ∂2ψ

∂z∂z (0) = 40. Therefore |∂
2ψ
∂z2 (0)| >

∂2ψ
∂z∂z (0). Then ψ is not convex

on C. Consequently, v is not convex on C2.
Comparing the preceding theorem and proposition 3, we observe that the exponent 2 is
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special in our considerations. For instance, let uk(z, w) = |w−f1(z)|2k+ |w−f2(z)|2k,
k ∈ N\{0}, f1, f2 : Cn → C be two holomorphic functions and (z, w) ∈ Cn × C. We
can prove that uk is convex on Cn×C implies that u1 is convex on Cn×C if (k ≥ 2),
but the converse is not true.
Let vδ(z, w) = |A1w − f1(z)|δ + |A2w − f2(z)|δ, δ ∈ [1,+∞[ and (A1, A2) ∈ C2\{0}.
Observe that the study of the convexity of the function vδ is based on two additional
cases.
Moreover, observe that by the above technical proof, we have

Theorem 10. Let f1, f2 : Cn → C be two holomorphic functions. Define u(z, w) =
|w − f1(z)|4 + |w − f2(z)|4, for (z, w) ∈ Cn × C. We have u is convex on Cn × C if
and only if f1 and f2 are affine functions on Cn.
Proof. We can see the proof of theorem 9 and proposition 3.

Remark 5. Let f1(z) = zN , f2(z) = −zN , f3(z) = izN and f4(z) = −izN , N ∈
N\{0, 1}, for z ∈ C.
Put u(z, w) = |w − f1(z)|4 + |w − f2(z)|4 + |w − f3(z)|4 + |w − f4(z)|4, (z, w) ∈ C2.
u is convex on C2, because u(z, w) = c(|w|2 + |zN |2)2, where c ∈ R, c > 0. But f1, f2,
f3 and f4 are not affine functions.

We have the following.

Question 1. Let F1, F2, F3 : Cn → C be holomorphic functions. Put ψ1(z) =
(|F1(z)|4 + |F2(z)|4), ψ2(z) = (|F1(z)|4 + |F2(z)|4 + |F3(z)|4), z ∈ Cn.
(I) Is it true that ψ1 is convex on Cn implies that F1 and F2 are affine functions on
Cn?
(II) Assume that ψ2 is convex on Cn. Is it true that F1, F2 and F3 are affine functions
on Cn?
The number of holomorphic functions is it fundamental in the above two situations?

We have

Proposition 4. Let k ∈ N\{0, 1} and φ : Cn → C be holomorphic. Define v(z, w) =
|w+ < z/a > +b+φ(z)|2k+|w+ < z/a > +b−φ(z)|2k, a ∈ Cn, b ∈ C, (z, w) ∈ Cn×C.
Assume that φ is not affine and |φ| is convex on Cn. Then v is not convex on Cn×C.
Proof. Obviously follows from the proof of proposition 3. Observe that, using the
holomorphic differential equation cited above, we have the additional result.

Theorem 11. Let g1, g2 : Cn → C be two holomorphic functions and k ∈ N\{0, 1}.
Put u(z, w) = |w− g1(z)|2k + |w− g2(z)|2k and v(z, w) = |w− g1(z)|2 + |w− g2(z)|2,
(z, w) ∈ Cn × C.
(I) Assume that u is convex on Cn × C. Then v is convex on Cn × C.
(II) Suppose that v is convex on Cn × C. We can not conclude that u is convex on
Cn × C. But we have
(III) u is convex on Cn × C if and only if g1 and g2 are affine functions.

Extension of the results. Let ψδ = |w − f1(z)|δ + |w − f2(z)|δ, δ ∈ [1,+∞[,
f1, f2 : Cn → C be two holomorphic functions and (z, w) ∈ Cn × C. We observe
without any assumption on δ ∈ [1,+∞[, for instance , for the study of the convexity
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of the function ψδ, the proof is organized in two separately cases.
Case 1. δ = 2. (In this case, we obtain several solutions not affine functions).
Case 2. δ ∈ [1,+∞[\{2}.
In general we have the following two remarks (R1) and (R2).
(R1). Let f : C → C be a function. Put φδ(z, w) = |w − f(z)|δ, δ ∈ [1,+∞[ and
(z, w) ∈ C2. We have φδ is convex on C2 if and only if f is affine (and in particular
f is a function of class C∞ on C).
(Let N ∈ N\{0}, 2N ≥ δ and put G(z, w) = |w − f(z)|2N , (z, w) ∈ C2. Suppose
that φδ is convex on C2. Consequently, G is psh on C2. By Abidi [1], it follows that
f is harmonic on C. Now let T : C → C be an R− linear bijective transformation.
Consider M(z, w) = (T (z), w), for (z, w) ∈ C2. Note that M is R− linear and a
bijective transformation on C2. Therefore G oM is convex on C2 and consequently,
G oM is psh on C2. Since G oM(z, w) = |w − f oT (z)|, for (z, w) ∈ C2. Then f oT
is harmonic on C, for any R− linear transformation T. Then f is affine on C).
But if we define Fδ(z, w) = |w − f1(z)|δ + |w − g1(z)|δ, where

f1(z) =

{
1 if Re(z) ≥ 0
−1 if Re(z) < 0

and

g1(z) =

{
−1 if Re(z) ≥ 0
1 if Re(z) < 0

for (z, w) ∈ C2. Then we have
Fδ(z, w) = |w − 1|δ + |w + 1|δ and consequently, the function Fδ is convex on C2, for
each δ ≥ 1. But f1 and g1 are noncontinuous functions at any point of C. Moreover,
we have
(R2). There exists two continuous functions f, g : C → C, with Kδ(z, w) = |w −
f(z)|δ + |w − g(z)|δ, (z, w) ∈ C2, Kδ is convex on C2 (for each δ ≥ 1), but f and g
are not functions of class C∞ on C.
Example. Let f(z) = |x|, g(z) = −|x|, z = (x+ iy) ∈ C, x = Re(z).

Question 2. Let ψ1, ..., ψN : Cn → C be analytic functions, N, k ∈ N, k ≥ 2. Define

ψ(z, w) = |w − ψ1(z)|2k + ...+ |w − ψN (z)|2k, (z, w) ∈ Cn × C.

Assume that N ≤ 2k− 1 and ψ is convex on Cn×C. Characterize ψ1, ..., ψN by their
analytic expressions.

Question 3. Let φ1, φ2, φ3, φ4 : Cm → C and g1, g2, g3, g4 : Cn → C be 8 holomor-
phic functions. Put u = (u1+u2), where u1(z, w) = |φ1(w)−g1(z)|4+|φ2(w)−g2(z)|4,
u2(z, w) = |φ3(w)− g3(z)|4 + |φ4(w)− g4(z)|4, (z, w) ∈ Cn × C.
Characterize φ1, φ2, φ3, φ4, g1, g2, g3, g4 by their expressions such that u1 and u2 are
convex functions on Cn × C and u is strictly psh on Cn × C.
In the sequel, for instance, observe that there exists a great differences between the
exponent 2 and the exponent 4 (or 2k, k ∈ N\{0, 1}) in real convexity.

We have
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Lemma 4. (I) There exists ψ1, ψ2 : Cn → C two holomorphic functions such that
|ψ1|2 and |ψ2|2 are not convex functions, while u = (|ψ1|2 + |ψ2|2) is convex on Cn,
but v = (|ψ1|4+ |ψ2|4) is not convex on Cn (respectively (|ψ1|2k+ |ψ2|2k) is not convex
on Cn for each k ∈ N\{0, 1}).
(II) There exists φ1, φ2 : Cn → C holomorphic functions, with |φ1|2 is convex and
|φ2|2 is not convex on Cn, (|φ1|2+ |φ2|2) is convex on Cn, but (|φ1|2k+ |φ2|2k) is not
convex on Cn, for each k ∈ N\{0, 1}.
(Example. φ1(z) = 2z, φ2(z) = z2 − 1, z ∈ C).

We introduce this lemma because it yields the following questions.

Question 4. Let f1, f2 : Cn → C be analytic functions and δ ∈ [1,+∞[. Put
u = (|f1|δ + |f2|δ). Suppose that u is convex on Cn and δ ̸= 2. Is it true that |f1| and
|f2| are convex functions on Cn?

Question 5. Let n,m ∈ N\{0}. Find all the holomorphic functions f1, f2 : Cn → C,
φ1, φ2 : Cm → C, such that ψ is convex on Cn × Cm, where ψ(z, w) = |φ1(w) −
f1(z)|δ + |φ2(w)− f2(z)|δ, for (z, w) ∈ Cn × Cm.

4. Some study of a particular case and algebraic
method

Theorem 12. Let A1, A2, A3, A4, A5 ∈ C\{0}. Consider g1, g2, g3, g4, g5 : Cn → C be
five holomorphic functions. Define u1(z, w) = |A1w − g1(z)|2 +
|A2w − g2(z)|2, v1(z, w) = |A3w − g3(z)|2 + |A4w − g4(z)|2, u(z, w) = u1(z, w) +
v1(z, w) + |A5w − g5(z)|2, (z, w) ∈ Cn × C.
The following conditions are equivalent
(I) u1 and v1 are convex functions on Cn × C and u is (convex and strictly psh) on
Cn × C;
(II) n ∈ {1, 2, 3, 4} and we have{

g1(z) = A1(< z/a > +b) +A2φ(z)
g2(z) = A2(< z/a > +b)−A1φ(z){
g3(z) = A3(< z/c > +d) +A4ψ(z)
g4(z) = A4(< z/c > +d)−A3ψ(z)

and g5(z) = (< z/λ > +µ), (for all z ∈ Cn, where a, c, λ ∈ Cn, b, d, µ ∈ C, φ, ψ :
Cn → C are 2 holomorphic functions, |φ| and |ψ| are convex functions on Cn) with
the following 4 cases.

(1) n = 4. We have (a− c, a− λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z),
∂φ
∂z4

(z)),

( ∂ψ∂z1 (z),
∂ψ
∂z2

(z), ∂ψ∂z3 (z),
∂ψ
∂z4

(z))) is a basis of the complex vector space C4, for all z ∈
C4.
(2) n = 3. Then we have for all z ∈ C3, z = (z1, z2, z3),

(a − c, a − λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z))), or (a − c, a − λ, ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z), ∂ψ∂z3 (z))), or
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(a− c, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z)), (
∂ψ
∂z1

(z), ∂ψ∂z2 (z),
∂ψ
∂z3

(z))), or

(a−λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z)), (
∂ψ
∂z1

(z), ∂ψ∂z2 (z),
∂ψ
∂z3

(z))) is a basis of the complex vector

space C3.
(3) n = 2. Then for each z = (z1, z2) ∈ C2, the quantity (a − c, a − λ), or (a −
c, ( ∂φ∂z1 (z),

∂φ
∂z2

(z))), or (a − c, ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z))), or (a − λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z))), or (a −
λ, ( ∂ψ∂z1 (z),

∂ψ
∂z2

(z))), or (( ∂φ∂z1 (z),
∂φ
∂z2

(z)), ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z))) is a basis of the complex

vector space C2.
(4) n = 1. Then we have for all z ∈ C, (a − c) ̸= 0, or (a − λ) ̸= 0, or (∂φ∂z (z) ̸= 0),

or (∂ψ∂z (z) ̸= 0).

Proof. (I) implies (II). Since u1 is convex on Cn × C, then{
g1(z) = A1(< z/a > +b) +A2φ(z)
g2(z) = A2(< z/a > +b)−A1φ(z)

(for each z ∈ Cn, where a ∈ Cn, b ∈ C, φ : Cn → C is analytic, |φ| is convex on Cn).
u2 is convex on Cn × C, then{

g3(z) = A3(< z/c > +d) +A4ψ(z)
g4(z) = A4(< z/c > +d)−A3ψ(z)

(for every z ∈ Cn, with c ∈ Cn, d ∈ C, ψ : Cn → C is analytic and |ψ| is convex
on Cn).
Note that u is a function of class C∞ on Cn × C. Now since u is convex on Cn × C,
then if we put z = (z1, ..., zn) ∈ Cn, w = zn+1, α = (α1, ..., αn) ∈ Cn, β = αn+1 ∈ C,
we have∣∣∣∣∣∣
n+1∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk

∣∣∣∣∣∣ ≤
n+1∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C.

It follows that g5 is an affine function on Cn. Therefore g5(z) = (< z/λ > +µ), for
each z ∈ Cn, where λ ∈ Cn and µ ∈ C. Then

u(z, w) = (|A1|2 + |A2|2)(|w− < z/a > −b|2 + |φ(z)|2)
+ (|A3|2 + |A4|2)(|w− < z/c > −d|2 + |ψ(z)|2)
+ |A5w− < z/λ > −µ|2, (z, w) ∈ Cn × C.

Define

v(z, w) = |w− < z/a > −b|2 + |φ(z)|2 + |w− < z/c > −d|2

+ |ψ(z)|2 + |A5w− < z/λ > −µ|2, (z, w) ∈ Cn × C.

Then v is a function of class C∞ on Cn ×C and we have (u is strictly psh on Cn ×C
if and only if v is strictly psh on Cn × C). Therefore by lemma 1, n+ 1 ≤ 5.
Consequently, n ∈ {1, 2, 3, 4}.
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Now let T (z, w) = (z, w+ < z/a >), (z, w) ∈ Cn × C. T is a C− linear bijective
transformation on Cn × C.
Let v2(z, w) = v oT (z, w) = |w − b|2 + |φ(z)|2 + |w+ < z/a − c > −d|2 + |ψ(z)|2 +
|A5w+ < z/a− λ > −µ|2, (z, w) ∈ Cn × C.
Therefore v2 is a function of class C∞ on Cn×C. We have v is strictly psh on Cn×C
if and only if v2 is strictly psh on Cn × C. The Levi hermitian form of v2 is

L(v2)(z, w)(α, β) = |β|2 + |
n∑
j=1

∂φ

∂zj
(z)αj |2 + |β+ < α/a− c > |2 +

|
n∑
j=1

∂ψ

∂zj
(z)αj |2 + |A5β+ < α/a− λ > |2, (z, w) = ((z1, ..., zn), w) ∈ Cn × C, (α, β) =

((α1, ..., αn), β) ∈ Cn × C.
Now L(v2)(z, w)(α, β) = 0 if and only if β = 0 and

|
n∑
j=1

∂φ

∂zj
(z)αj |2 + |β+ < α/a− c > |2 + |

n∑
j=1

∂ψ

∂zj
(z)αj |2 + |A5β+ < α/a− λ > |2 = 0,

(z, w), (α, β) ∈ Cn × C. It follows that, if we define u2(z) = |φ(z)|2 + | < z/a − c >
−d|2 + |ψ(z)|2 + | < z/a − λ > −µ|2, for z ∈ Cn, then u2 is a function of class C∞

on Cn.
Now Observe that v2 is strictly psh on Cn ×C if and only if u2 is strictly psh on Cn.
Case 1. n = 4. In this case observe that u is strictly psh on C4 ×C if and only if the
quantity

(a− c, a− λ, (
∂φ

∂z1
(z),

∂φ

∂z2
(z),

∂φ

∂z3
(z),

∂φ

∂z4
(z)), (

∂ψ

∂z1
(z),

∂ψ

∂z2
(z),

∂ψ

∂z3
(z),

∂ψ

∂z4
(z)))

is a basis of the complex vector space C4, for all z = (z1, z2, z3, z4) ∈ C4.
Case 2. n = 3. The Levi hermitian form of u2 is

L(u2)(z)(α) = |
3∑
j=1

∂φ

∂zj
(z)αj |2 + | < α/a− c > |2 + |

3∑
j=1

∂ψ

∂zj
(z)αj |2 +

| < α/a− λ > |2, for z = (z1, z2, z3) ∈ C3, α = (α1, α2, α3) ∈ C3.
L(u2)(z)(α) = 0 if and only if

< α/a− c >= 0,
< α/a− λ >= 0,
3∑
j=1

∂φ

∂zj
(z)αj = 0, and

3∑
j=1

∂ψ

∂zj
(z)αj = 0.

Therefore u2 is strictly psh on C3 if and only if for all z = (z1, z2, z3) ∈ C3, we can
choose a basis (of the complex vector space C3) consisting of 3 vectors from the set
of vectors
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{a− c, a− λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z)), (
∂ψ
∂z1

(z), ∂ψ∂z2 (z),
∂ψ
∂z3

(z))}.
Case 3. n = 2. In this case u2 is strictly psh on C2 if and only if for all z = (z1, z2) ∈
C2, we can choose a basis (consisting by 2 vectors basis of the complex vector space

C2) from the set {a− c, a− λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z)), ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z))}.
Case 4. n = 1. u2 is strictly sh on C if and only if for all z ∈ C, we have (a− c) ̸= 0,
or (a− λ) ̸= 0, or (∂φ∂z (z) ̸= 0), or (∂ψ∂z (z) ̸= 0).
The proof is now finished.

Moreover, we have

Question 6. Let n,m,N ∈ N\{0} and (A1, B1), ..., (AN , BN ) ∈ C2\{(0, 0)}.
Find all the holomorphic functions g1, f1, ..., gN , fN : Cn → C and all the holo-
morphic (respectively prh) nonconstant functions k1, ..., kN : Cm → C such that
u1, ..., uN are convex and u = (u1 + ... + uN ) is strictly psh on Cn × Cm, where
uj(z, w) = |Ajkj(w)− fj(z)|2 + |Bjkj(w)− gj(z)|2, for (z, w) ∈ Cn ×Cm, 1 ≤ j ≤ N.
In general we prove that this question have applications in the theory of (partial dif-
ferential equations and (convex and strictly psh functions) in several variables), and
therefore for the resolution of certain holomorphic partial differential equations in
complex analysis. Because, in the sequel, we have a relation between partial differen-
tial equations and the subject (convex and strictly psh functions) in complex analysis
and geometry.

Example. Find all the holomorphic functions f, g : C → C, such that
(a) |f2 + f | and |g2 − g| are convex functions on C, and
(b) ψ is strictly psh on C2, where ψ(z1, z2) = |f2(z1) + f(z1)|2 + |g2(z2)− g(z2)|2, for
(z1, z2) ∈ C2.
In this case we solve the holomorphic differential equation
(f2 + f)′′(f2 + f) = γ(2ff ′ + f ′)2, where γ ∈ { s−1

s , 1 / s ∈ N\{0}}, ...
Example. Let N ≥ 2. Find all the holomorphic functions f1, ..., fN : Cn → C, such
that v is convex and strictly psh on Cn ×C. We can see the problem v is convex and
v1 is strictly psh on Cn × C (in this case we apply lemma 1). Where

v(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,

v1(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,
for (z, w) ∈ Cn×C. In this situation, we solve several holomorphic partial differential
equations which characterize the complex structure strictly psh. Finally, we choose
the solution which gives the convexity of v (or conversely).

Question 7. Let n,m, k ∈ N\{0}. Find all the holomorphic functions g1, g2, g3, g4 :
Cn → C and all the holomorphic functions φ1, φ2, φ3, φ4 : Cm → C such that v1 and
v2 are convex and v = (v1 + v2) is strictly convex on Cn × Cm, where

v1(z, w) = |φ1(w)− g1(z)|2k + |φ2(w)− g2(z)|2k,

v2(z, w) = |φ3(w)− g3(z)|2k + |φ4(w)− g4(z)|2k,
for (z, w) ∈ Cn × Cm.
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5. The product of several psh functions and applica-
tions

The main objective of this section is to study the behaviour of the product of several
absolute values of prh functions. Note that it is well known that the product of many
psh functions is not in general psh.

Example. Let v1(z, w) = |w− z||w− 2z|, for (z, w) ∈ C2. Then v1 is not psh on C2.
In the sequel, let D be a domain of Cn, n ∈ N\{0}, N ∈ N\{0, 1} and φ1, ..., φN : D →
C be holomorphic functions. Define u(z, w) =

∏
1≤j≤N

|w − φj(z)|, for (z, w) ∈ D × C.

Find conditions should satisfy N, φ1, ..., φN so that u is psh on D × C.
Now let f0, ..., fN−1 : D → C be holomorphic functions. Put v(z, w) = |wN +
fN−1(z)w

N−1 + ...+ f1(z)w+ f0(z)|, (z, w) ∈ D×C. Characterize N, fN−1, ..., f1, f0
such that v is psh on D × C.

Proposition 5. Let f, g : D → C be two functions, D is a domain of Cn, n ≥ 1. Put
u(z, w) = |w2 + f(z)w + g(z)|, (z, w) ∈ D ×C. Assume that f is continuous and g of
class C2 on D. Then u is psh on D × C if and only if we have one assertion of the
following conditions.
(I) f is holomorphic on D and g is prh on D.

(II) f is prh and not holomorphic and g = f2

4 on D.

Proof. Put v = u2. Assume that u is psh on D × C. Then v is psh on D × C. By
Abidi [2], f is pluriharmonic (prh) on D. Thus v is a function of class C2 on D × C.
Without loss of generality we assume that n = 1. Let (z, w) ∈ D × C.

∂2v

∂w∂w
(z, w) = |2w + f(z)|2.

∂2v

∂z∂w
(z, w) =

∂f

∂z
(z)((w)2 + wf(z) + g(z)) + (2w + f(z))(w

∂f

∂z
(z) +

∂g

∂z
(z)).

We have

| ∂
2v

∂z∂w
(z, w)|2 ≤ ∂2v

∂w∂w
(z, w)

∂2v

∂z∂z
(z, w)

for each (z, w) ∈ C2. Now observe that if w = − f(z)
2 , then ∂2v

∂w∂w (z,−
f(z)
2 ) = 0.

It follows that ∂2v
∂z∂w (z,−

f(z)
2 ) = 0 = ∂f

∂z (z)(g(z) −
f2(z)

4 ), for each z ∈ D. Now since

f is real analytic on D, then ∂f
∂z (z) = 0, for every z ∈ D, or there exists z0 ∈ D, such

that ∂f
∂z (z0) ̸= 0.

Case 1. For each z ∈ D, ∂f∂z (z) = 0.

Then f is holomorphic on D. Since u(z, w) = |(w+ f(z)
2 )2 − f2(z)

4 + g(z)|, for (z, w) ∈
D×C, we consider T (z, w) = (z, w− f(z)

2 ), for (z, w) ∈ D×C. T is a biholomorphism on

D×C. Therefore u oT is psh onD×C. u oT (z, w) = |w2− f2(z)
4 +g(z)|, (z, w) ∈ D×C.

By Abidi [1], the function ( f
2

4 − g) is harmonic on D. Consequently, g is harmonic
on D.
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Case 2. There exists z0 ∈ D such that ∂f
∂z (z0) ̸= 0.

We consider E = {ξ ∈ D / ∂f

∂ξ
(ξ) = 0}. Since ∂f

∂ξ
is antianalytic on D, then E is an

analytic closed subset on D. Therefore, D\E is a domain dense on D. Now since the

function ( f
2

4 − g) is continuous on D and ( f
2

4 − g) = 0 on D\E, then ( f
2

4 − g) = 0
on D.
Let us mention that, if n ≥ 2 and f = (f1+f2) is not holomorphic on an open polydisc
P = P1 × ... × Pn ⊂ D, where f1, f2 : P → C are holomorphic functions, P1, ..., Pn
are discs on C. Since f2 is nonconstant on P, we assume that |∂f2∂z1

| > 0 on P.

Thus | ∂2v
∂z1∂w

|2 ≤ ∂2v
∂z1∂z1

∂2v
∂w∂w on P. Since ∂2v

∂w∂w (z,−
f(z)
2 ) = 0, then ∂2v

∂z1∂w
(z,− f(z)

2 ) =

0, for each z ∈ P. We obtain ∂f2
∂z1

[ f
2

4 − g] = 0 on P. Consequently, g = f2

4 on P.
Now since f is not holomorphic on each not empty open polydisc subset of D, it

follows that g = f2

4 on D. The proof in now complete.

Now we have

Theorem 13. Let f, g, k : Cn → C, n ≥ 1.
Define u(z, w) = |w3 + w2f(z) + wg(z) + k(z)|, for (z, w) ∈ Cn × C.
Assume that f is continuous on Cn and g and k are functions of class C2 on Cn.
Then u is psh on Cn × C if and only if we have the following two cases.
Case 1. f and g are holomorphic functions and k is prh on Cn.
Case 2. f is prh and not holomorphic on Cn.
Put q(w) = 3w2 + 2wf(z) + g(z), for each w ∈ C and every fixed z on Cn.
q have an only one zero on C, for each z fixed on Cn, (therefore g(z) =
f2(z)

3 and k(z) = f3(z)
27 ).

Proof. Put v = u2. Assume that u is psh on Cn × C. Then v is psh on Cn × C. We
can prove that f is prh on Cn, using Abidi [2]. Therefore v is a function of class C2

on Cn × C.
Case 1. The function f is holomorphic on Cn.
w3 + w2f(z) + wg(z) + k(z) = (w + f(z)

3 )3 + w(g(z) − f2(z)
3 ) − f3(z)

27 + k(z), for
(z, w) ∈ Cn × C.
Since psh functions are invariant by any change by holomorphic functions, we can

replace (w + f(z)
3 ) by w, we obtain

w3 + (w − f(z)
3 )(g(z) − f2(z)

3 ) − f3(z)
27 + k(z) = w3 + w(g(z) − f2(z)

3 ) + k1(z), k1 is a
function of class C2 on Cn.
Now using the proof described in [2], we can prove that g is prh on Cn. Suppose that
g is holomorphic on Cn. We can prove that k is prh on Cn. Therefore u = |h|, where
h : Cn ×C → C is prh. Then u is psh on Cn ×C. Suppose that g is not holomorphic
on Cn. Assume that n = 1. We have
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∂2v

∂w∂w
(z, w) = |3w2 + 2wf(z) + g(z)|2.

∂2v

∂w∂z
(z, w) = (2w

∂f

∂z
(z) +

∂g

∂z
(z))(w3 + f(z)w2 + g(z)w + k(z))

+ (3w2 + 2wf(z) + g(z))((w)2
∂f

∂z
(z) + w

∂g

∂z
(z) +

∂k

∂z
(z)).

Since v is psh then we have the inequality

(E) : | ∂
2v

∂w∂z
(z, w)|2 ≤ ∂2v

∂w∂w
(z, w)

∂2v

∂z∂z
(z, w)

for each (z, w) ∈ C2.
Since g is not holomorphic on C, then there exists z0 ∈ C, such that |∂g∂z | > 0 on a
neighborhood of z0.
Let q1(w) = w3 + w2f(z) + wg(z) + k(z) and q2(w) = 3w2 + 2wf(z) + g(z), for
(z, w) ∈ C2.
Note that q1 and q2 are holomorphic polynomials in the variable w ∈ C, for each fixed
z ∈ C. Also q′1 = q2. The holomorphic polynomial q2 has two zeros denoted w1 and
w2 ∈ C.
Assume that w1 ̸= w2. Then w1 and w2 are distinct zeros of the polynomial q1 by the
inequality (E). Since q′1 = q2 then w1 and w2 are two distinct zeros of order 2 of q1.
A contradiction because deg(q1) = 3. Therefore w1 = w2 is a zero of q2 of order 2.
Thus w1 is a zero of q1 of order 3. Then we have q1(w) = (w−w1)

3, for every w ∈ C.
Consequently, f = −3w1 and then q1(w) = (w+ f(z)

3 )3, for each z in a neighborhood

of z0. Then g(z) =
f2(z)

3 and therefore g is holomorphic in a neighborhood of z0. A
contradiction. This step is impossible.
Case 2. The function f is not holomorphic on Cn.
Assume that n = 1. Therefore ∂f

∂z ̸= 0. Put q1(w) = w3 + w2f(z) + wg(z) + k(z),

q2(w) = 3w2+2wf(z)+g(z), q3(w) = 2w ∂f
∂z (z)+

∂g
∂z (z), for (z, w) ∈ C2. Note that q1,

q2 and q3 are holomorphic polynomials in the variable w ∈ C, for every fixed z ∈ C.
We have q′1 = q2. Let z0 ∈ C, such that ∂f

∂z (z) ̸= 0, for every z ∈ V0, where V0 is
an Euclidean open disc in C, z0 ∈ V0. Now q2 have two zeros w0(z) and w1(z) ∈ C.
Suppose that w0(z) = w1(z). From the inequality (E), w0 is a zero of q1. Since q

′
2 = q1,

then w0 is a zero of q1 of order 3. Therefore q1(w) = (w − w0)
3. If for every z ∈ V0,

w0(z) = w0 = w1(z) = w1, then q1(w) = (w−w0(z))
3 = (w+ f(z)

3 )3, in V0 ×C. Then
g = f2

3 and k = f3

27 . If there exists z1 ∈ V0 such that w0(z1) = a ̸= w1(z1) = b. The
condition a and b are zeros of q1 is impossible because deg(q1) = 3. By the inequality
(E), for example we have b is a zero of q1 of order 2 and a is a zero of q3.
Let w2 the second zero of q1 of order 1. Then we have the following relations between
the zeros and the coefficients of the polynomial q3, a + b = −2 f3 , ab = 3g and
2b + w2 = −f. Thus we have the equalities 3a + 3b = 4b + 2w2, 3a = b + 2w2 and
b2 + 2bw2 = g = 1

3ab.
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If b ̸= 0 on a neighborhood of z1., then b+ 2w2 = 1
3a = 3a. Consequently, a = 0.

Therefore g = 0 and k ̸= 0. We have then b = −2 f3 , w2 = f
3 . Thus u defined by,

u(z, w) = |w+2 f3 (z)|
2|w− f

3 (z)|, is psh on C2. Put u1(z, w) = |w+2f(z)|2|w− f(z)|,
for (z, w) ∈ C2. Then u1 is psh on C2. But it is obvious (by theorem 14 below), that
f is holomorphic on C. A contradiction. Consequently, b = 0 on a neighborhood of
z1. Thus w2 = −f and a = 0 (because g = 0 on a neighborhood of z1). Therefore
q2(w) = 3w2 and observe that f = 0. A contradiction. Therefore, the assumption
a ̸= b is impossible. It follows that w0(z) = w1(z), for each z ∈ V0. Therefore

q1(w) = (w − w0)
3, for each w ∈ C. We obtain g = f2

3 and k = f3

27 .
Assume now that n ≥ 2. Obviously we consider in this situation an analogous proof
of the above theorem as well. The proof is now complete.

Recall that for each f : D → C, ψ is psh onD×C if and only if f is pluriharmonic (prh)
on D, where ψ(z, w) = |w − f(z)|N , N ∈ N\{0}, D is a domain of Cn and (z, w) ∈
D × C. Now we prove that there exists a similar characterization of holomorphic
functions. We have

Theorem 14. Let f : Cn → C be continuous. Put u(z, w) = |w + 2f(z)|2|w − f(z)|,
(z, w) ∈ Cn × C. Then u is psh on Cn × C if and only if f is holomorphic on Cn.

Proof. Assume that u is psh on Cn × C. Since u(z, w) = |w3 + 3f(z)w2 − 4f3(z)|,
for each (z, w) ∈ Cn ×C. Then f is prh on Cn, (see [2], page 336). In particular, f is
a function of class C∞ on Cn. If f is holomorphic on Cn, then u is psh on Cn × C.
Assume that f is not holomorphic on Cn. Then f is nonconstant. Without loss of
generality we suppose that n = 1 in all of the rest of the proof.
Case 1. The function g = f is holomorphic on C.
Put v = u2. Then v(z, w) = |w3 + 3g(z)w2 − 4g3(z)|2, (z, w) ∈ C2. Note that v is a
function of class C∞ on C2. We have

∂2v

∂z∂w
(z, w) = 6

∂g

∂z
(z)w[w3 + 3g(z)w2 − 4g3(z)],

∂2v

∂w∂w
(z, w) = |3w2 + 6g(z)w|2,

∂2v

∂z∂z
(z, w) = |3∂g

∂z
(z)w2 − 12(g)2(z)

∂g

∂z
(z)|2.

Suppose that ∂g
∂z = 0 on C. Then g is constant on C. It follows that f is con-

stant on C. A contradiction. Consequently, ∂g
∂z ̸= 0. Since ∂2v

∂z∂z (z, 2g(z)) = 0 and

| ∂
2v

∂z∂w (z, w)|
2 ≤ ∂2v

∂z∂z (z, w)
∂2v
∂w∂w (z, w), for each (z, w) ∈ C2, then ∂2v

∂z∂w (z, 2g(z)) = 0,
for any z ∈ C. Thus g(z)[16(g3)(z)] = 0, for all z ∈ C. It follows that g = 0 on C. A
contradiction. Therefore this case is impossible.
Case 2. The function g = f is not holomorphic on C.
Let v = u2. Then v is a function of class C∞ and psh on C2. Let g1, g2 : C → C be two
harmonic functions and (z, w) ∈ C2. Define F (z, w) = (w − g1(z))

2(w − g1(z))
2(w −

g2(z))(w− g2(z)). Note that F is a C∞ function on C2. Assume that F is psh on C2.
We have
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∂2F
∂w∂w (z, w) = |2(w − g2(z)) + (w − g1(z))|2|w − g1(z)|2.
∂2F
∂z∂w (z, w) = −2∂g1∂z (z)(w − g1(z))

2(w − g2(z))(w − g2(z))− 4∂g1∂z (z)(w − g1(z))(w −
g1(z))(w−g2(z))(w−g2(z))−2∂g2∂z (z)(w−g1(z))(w−g1(z))2(w−g2(z))−2∂g2∂z (z)(w−
g1(z))(w−g1(z))2(w−g2(z))− ∂g2

∂z (z)(w−g1(z))2(w−g1(z))2−2∂g1∂z (z)(w−g1(z))(w−
g2(z))(w − g1(z))

2 − 2∂g1∂z (z)(w − g1(z))(w − g2(z))(w − g1(z))
2.

∂2F
∂z∂z (z, w) = 2∂g1∂z (z)

∂g1
∂z (z)(w − g1(z))

2(w − g2(z))(w − g2(z)) + 4∂g1∂z (z)
∂g1
∂z (z)(w −

g1(z))(w− g1(z))(w− g2(z))(w− g2(z)) + 2∂g1∂z (z)
∂g2
∂z (w− g1(z))(z)(w− g1(z))

2(w−
g2(z)) + 2∂g1∂z (z)

∂g2
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z)) + 2∂g1∂z (z)
∂g1
∂z (z)(w −

g1(z))
2(w− g2(z))(w− g2(z)) + 4∂g1∂z (z)

∂g1
∂z (z)(w− g1(z))(w− g1(z))(w− g2(z))(w−

g2(z)) + 2∂g1∂z (z)
∂g2
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z))+

2∂g1∂z (z)
∂g2
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z)) + 2∂g2∂z (z)
∂g1
∂z (z)(w − g1(z))(w −

g1(z))
2(w − g2(z)) + 2∂g2∂z (z)

∂g1
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z))+

2∂g2∂z (z)
∂g1
∂z (z)(w − g1(z))(w − g2(z))(w − g1(z))

2 + ∂g2
∂z (z)

∂g2
∂z (z)(w − g1(z))

2(w −
g1(z))

2 + 2∂g2∂z (z)
∂g1
∂z (z)(w − g1(z))(w − g2(z))(w − g1(z))

2 + 2∂g2∂z (z)
∂g1
∂z (z)(w −

g1(z))(w − g1(z))
2(w − g2(z)).

Let η > 0. Observe that if we replace g1 and g2 respectively by ηg1 and ηg2, the new
function F1, defined by F1(z, w) = |w − ηg1(z)|4|w − ηg2(z)|2 for (z, w) ∈ C2, is also
of class C∞ and psh on C2.
Therefore if we divide by η2 and letting η go to 0, then

lim
η→0+

1

η2
| ∂

2F1

∂z∂w
(z, w)|2 ≤ lim

η→0+
[
1

η2
∂2F1

∂w∂w
(z, w)

∂2F1

∂z∂z
(z, w)].

Let N ∈ N\{0}. Write f = f1 + f2, where f1 and f2 are holomorphic functions on C.
Consider T (z, w) = (z, w + Nf1(z)), (z, w) ∈ C2. T is a biholomorphism of C2.
Therefore u oT is a function of class C∞ and psh on C2.

u oT (z, w) = |w + (N + 2)f1(z)2f2(z)|2|w + (N − 1)f1(z)− f2(z)|.

Define g1 = −(N + 2)f1 + 2f2 and g2 = −(N − 1)f1 + f2 on C.
g1 and g2 are harmonic functions on C.
Thus for w0 = 1 and using the above inequality and letting η go to 0
(we replace g1 and g2 respectively by ηg1 and ηg2).
We obtain
|2∂g1∂z (z) + 4∂g1∂z (z) + 2∂g2∂z (z) + 2∂g2∂z (z) +

∂g2
∂z (z) + 2∂g1∂z (z) + 2∂g1∂z (z)|

2 ≤
9[2∂g1∂z (z)

∂g1
∂z (z) + 4∂g1∂z (z)

∂g1
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g1∂z (z)

∂g1
∂z (z) +

4∂g1∂z (z)
∂g1
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z) +

∂g2
∂z (z)

∂g2
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z) +

∂g2
∂z (z)

∂g2
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z)].

Then |4∂f2∂z (z) + 4(N + 2)∂f1∂z (z) + 2∂f2∂z (z) + 3(N − 1)∂f1∂z (z) + 4∂f2∂z (z) + 2(N +

2)∂f1∂z (z)|
2 ≤

9[4(N+2)2|∂f1∂z (z)|
2+2(N+2)(N−1)|∂f1∂z (z)|

2+2(N−1)(N+2)|∂f1∂z (z)|
2+A(N, z)],
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where A(N, z) is a function defined on N × C and satisfy lim
N→+∞

1

N2
A(N, z) = 0, for

each z fixed on C.
We divide the last above inequality by N2 and letting N go to +∞. We obtain
9× 9|∂f1∂z (z)|

2 ≤ 9× 8|∂f1∂z (z)|
2, for all z ∈ C. Thus ∂f1

∂z (z) = 0, for each z ∈ C.
Consequently, f1 is constant on C. Write f1 = c, c ∈ C. Therefore f = c+ f2 on C. It
follows that g = f is holomorphic on C. A contradiction.
Consequently, this case is impossible. Therefore the above hypothesis is false and f
is holomorphic on C. The converse is obvious.

Remark 6. To compare the above theorem and some results of [2], observe that
we can not write (w + 2f)(w − f) on the form p(w − f), where p is a holomorphic
polynomial on C and f : C → C, f ̸= 0. But if q is the following holomorphic
polynomial on C2, defined by q(ξ, w) = (w+2ξ)(w− ξ), for (ξ, w) ∈ C2, we can write
(w+2f)(w− f) = q(f, w). Denote ψ(ξ, w) = |q(ξ, w)|. Then ψ is not psh on C2. (We
say in this case that |q| characterize holomorphic functions).

Proposition 6. Let f1, g1, f2, g2, f3, g3 : Cn → C be holomorphic functions. Define
u(z, w) = |w−f1(z)−g1(z)||w−f2(z)−g2(z)||w−f3(z)−g3(z)|, for (z, w) ∈ Cn×C.
The following conditions are equivalent
(I) u is psh on Cn × C;
(II) We have only case 1, or case 2.
Case 1. (g1 + g2 + g3) is constant,
(f1 + g1)(f2 + g2) + (f1 + g1)(f3 + g3) + (f2 + g2)(f3 + g3) is holomorphic on Cn and
(f1 + g1)(f2 + g2)(f3 + g3) is prh on Cn.
Case 2. (g1 + g2 + g3) is non constant and
(f1+g1)(f2+g2)+(f1+g1)(f3+g3)+(f2+g2)(f3+g3) =

1
3 (f1+f2+f3+g1+g2+g3)

2

on Cn.

Proof. Obvious by the preceding theorem. In general, we have the following prob-
lems.

Problem 1. Let n,N ∈ N, N ≥ 2, D is a domain of Cn. Find all the analytic functions
g1, ..., gN : D → C, such that u is psh onD×C. Here u(z, w) = |w−g1(z)|...|w−gN (z)|,
for (z, w) ∈ D × C.

Problem 2. Let v(z, w) = |f1(z)− g1(w)|...|fN (z)− gN (w)|, f1, ..., fN : Cn → C and
g1, ..., gN : Cm → C be 2N holomorphic functions, N ≥ 2 and (z, w) ∈ Cn×Cm. Find
all the conditions described by f1, ..., fN , g1, ..., gN such that v is convex on Cn×Cm.

Problem 3. Put v = |g1−φ1|...|gN−φN |, where g1, ..., gN : Cm → C and φ1, ..., φN :
Cn → C be 2N prh functions. Establish all the conditions satisfying by g1, ..., gN ,
φ1, ..., φN such that v is psh on Cn × Cm.

Problem 4. Let a1, ..., aN ∈ Cm, φ1, ..., φN : Cn → C be holomorphic functions,
N ≥ 2. Put v(z, w) = | < w/a1 > −φ1(z)|...| < w/aN > −φN (z)|, (z, w) ∈ Cn × Cm.
Characterize a1, ..., aN , φ1, ..., φN , such that v is psh on Cn × Cm.

Remark 7. Let vN (z, w) = |w − φ1(z)|...|w − φN (z)|, φ1, ..., φN : Cn → C be
holomorphic functions, N ≥ 2, (z, w) ∈ Cn × C.
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Consider the problem (EN ) : vN is psh on Cn × C.
A technical key for the study of the problem (EN ) is a consequence of the classical
cases (E2), (E3) and (E4) which are proved. Note that if |w−φ1||w−φ2| is psh then
for each holomorphic function φ3, the new function |w − φ1||w − φ2||w − φ3| is not
psh on Cn × C if φ1 and φ2 are nonconstant functions and φ3 ̸= φ1, or φ3 ̸= φ2.
The converse. Let u(z, w) = |w−φ1(z)||w−φ2(z)||w−φ3(z)|. Suppose that u is psh
on Cn×C and φj is non constant, 1 ≤ j ≤ 3. Then |w−φ1||w−φ2|, |w−φ1||w−φ3|
and |w−φ2||w−φ3| are not psh if (φ1 +φ2 +φ3) is constant, φ1 ̸= φ2, φ1 ̸= φ3 and
φ2 ̸= φ3.
Recall that u is psh on Cn ×C if and only if (φ1 + φ2 + φ3) is constant and (φ1φ2 +
φ1φ3 +φ2φ3) is constant, or (φ1 +φ2 +φ3) is nonconstant and φ1 = φ2 = φ3 on Cn.

Remark 8. Consider the functions g1(z) = z, g2(z) = −z, g3(z) = iz, g4(z) = −iz,
for z ∈ C. g1, g2, g3 and g4 are holomorphic functions on C. Let (z, w) ∈ C2.
v(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)||w − g4(z)| = |w2 − (z)2||w2 + (z)2| =
|w4 − (z)4|.
v = |h|, where h : C2 → C is prh. Then v is psh on C2. But v1, v2, v3 and v4 are not
psh functions on C2, where

v1(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)|,

v2(z, w) = |w − g1(z)||w − g2(z)||w − g4(z)|,

v3(z, w) = |w − g1(z)||w − g3(z)||w − g4(z)|,

v4(z, w) = |w − g2(z)||w − g3(z)||w − g4(z)|.

Note that a precise study of the plurisubharmonicity of the two functions ψ1 and
ψ2 extends some interesting and sharp results in the framework of a slightly differ-
ent direction. We can study the complex nature of the function ψ3(z, w) = |w −
g1(z)|...|w−gN (z)|, where (N = 2k, or N = 3×2k, k ∈ N, k ≥ 2), g1, ..., gN : Cn → C
are holomorphic functions, ψ1(z, w) =

∏
1≤j≤4

|w − φj(z)|, ψ2(z, w) =
∏

1≤j≤8

|w − φj(z)|

and φj : Cn → C is a holomorphic function, 1 ≤ j ≤ 8.
In the sequel, the next result gives the exact characterization according to algebraic
methods in the theory of holomorphic polynomials and related topics. We have

Theorem 15. Let φ1, φ2, φ3, φ4 : D → C be four holomorphic functions, D is a
domain of C. Put u(z, w) = |w−φ1(z)||w−φ2(z)||w−φ3(z)||w−φ4(z)|, (z, w) ∈ D×C.
Let v = u2. The following conditions are equivalent
(I) u is psh on D × C;
(II) We have the following cases.

Case 1. ∂2v
∂z∂w = 0 on D × C.

Case 2. ∂2v
∂z∂w ̸= 0 on D × C and we have the following two conditions.

Step 1. (

4∑
j=1

φj) is nonconstant and φ1 = φ2 = φ3 = φ4 on D.
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Step 2. (

4∑
j=1

φj) is constant on D and we have the following assertion.

There exists j1, j2, j3, j4, satisfying j1 < j2, j3 < j4, {j1, j2, j3, j4} = {1, 2, 3, 4},
φj1 = φj2 , φj3 = φj4 and the function φj1φj3 is nonconstant on D.

Proof. (I) implies (II). Let (z, w) ∈ D × C. We have
v(z, w) = |w4 − s1(z)w

3 + s2(z)w
2 − s3(z)w + s4(z)|2.

s1 =

4∑
j=1

φj , s2 =
∑

1≤j<k≤4

φjφk, s3 =
∑

1≤j<k<s≤4

φjφkφs, s4 = φ1φ2φ3φ4.

s1, s2, s3 and s4 are holomorphic functions on D.
v is a function of class C∞ and psh on D × C.
∂2v
∂w∂w (z, w) = |4w3 − 3s1(z)w

2 + 2s2(z)w − s3(z)|2 ≥ 0.
∂2v
∂z∂z (z, w) = | − s′1(z)w

3 + s′2(z)w
2 − s′3(z)w + s′4(z)|2 ≥ 0 and ∂2v

∂z∂w (z, w) =

(−3s′1(z)w
2 + 2s′2(z)w − s′3(z))[w

4 − s1(z)w3 + s2(z)w2 − s3(z)w + s4(z)].
Since v is psh on D × C, then we have the inequality

(E) : | ∂
2v

∂z∂w
(z, w)|2 ≤ ∂2v

∂z∂z
(z, w)

∂2v

∂w∂w
(z, w)

for each (z, w) ∈ D × C.
Put

q1(w) = (w − φ1(z))(w − φ2(z))(w − φ3(z))(w − φ4(z)),

q2(w) = −3s′1(z)w
2 + 2s′2(z)w − s′3(z),

q3(w) = 4w3 − 3s1(z)w
2 + 2s2(z)w − s3(z),

q4(w) = −s′1(z)w3 + s′2(z)w
2 − s′3(z)w + s′4(z).

q1, q2, q3 and q4 are holomorphic polynomials on C, for each fixed z on D.
We have q′1 = q3 and q′4 = q2. By the inequality (E) we have then |q1q2| ≤ |q3q4| on
C.
Case 1. q2(w) = 0, for every w ∈ C and for any z ∈ D.

Then s1, s2 and s3 are constant functions on D. Therefore ∂2v
∂z∂w = 0 on D×C. Thus

we have

u(z, w) = |w4 + c1w
3 + c2w

2 + c3w + φ1(z)φ2(z)φ3(z)φ4(z)|

where c1, c2, c3 ∈ C. Therefore u = |h|, when h is a pluriharmonic (prh) function on
D × C. Consequently, u is psh on D × C.
Case 2. q2 ̸= 0 on C.
Now fix z ∈ D, such that [−3s′1(z)w

2 + 2s′2(z)w − s′3(z)] ̸= 0. Since q1q2 ̸= 0 and the
inequality (E), there exists c ∈ C\{0} such that q3q4 = cq1q2 on C.
Step 1. s′1 ̸= 0 on C.
Then c = 4

3 . We have A = {φ1(z), φ2(z), φ3(z), φ4(z)} is the set of all zeros of the
analytic polynomial q1. Assume that the cardinality of A is equal to 4. Observe that
because of the property of the order of multiplicity of zeros of a polynomial and the
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relation q3q4 = 4
3q1q2, we have φ1(z), φ2(z), φ3(z), φ4(z) are distinct zeros of q4.

Therefore deg(q4) ≥ 4. A contradiction. Consequently, the cardinal of the subset A
is less than or equal 3.
Without loss of generality, we assume that φ1 = φ2. Assume that φ1 ̸= φ3. We have
φ1(z) is a zero of q3 and q4. Note that {φ1(z), φ3(z), φ4(z)} is exactly the set of zeros
of the holomorphic polynomial q4. Let w1 and w2 the two zeros of the polynomial q2.
Indeed, for instance, using possible relations between all the coefficients of a holomor-
phic polynomial and its zeros, we have then

w1 + w2 =
2

3

s′2(z)

s′1(z)
=

2

3
(φ1(z) + φ3(z) + φ4(z)).

w1w2 =
s′3(z)

3s′1(z)
=

1

3
(φ1(z)φ3(z) + φ1(z)φ4(z) + φ3(z)φ4(z)).

Assume that φ1(z), φ3(z) and φ4(z) are zeros of q4 of order 1. Then w1 and w2 are
not zeros of q4.
w1 and w2 are zeros of q3.
Therefore φ1(z) + w1 + w2 = 3

4s1(z) =
3
4 (2φ1(z) + φ3(z) + φ4(z)). Then w1 + w2 =

2
3 (φ1(z) + φ3(z) + φ4(z)).
w1 + w2 = 1

2φ1(z) +
3
4 (φ3(z) + φ4(z)). Thus φ3(z) + φ4(z) = 2φ1(z) and then

w1 + w2 = 2φ1(z).

w1w2 =
s′3(z)

3s′1(z)
=

1

3
(φ1(z)φ3(z) + φ1(z)φ4(z) + φ3(z)φ4(z))

=
1

3
[2(φ1(z))

2 + φ3(z)φ4(z)].

We have also

w1φ1(z) + w2φ1(z) + w1w2 =
2s2(z)

4
=
s2(z)

2
=

1

2
(φ2

1(z) + 2φ1(z)φ3(z) + 2φ1(z)φ4(z) + φ3(z)φ4(z)) =
1

2
(5φ2

1(z) + φ3(z)φ4(z))

= (w1 + w2)φ1 + w1w2.

Therefore,

2φ2
1(z) + w1w2 =

1

2
(5φ2

1(z) + φ3(z)φ4(z)).

w1w2 =
1

2
φ2
1(z) +

1

2
φ3(z)φ4(z) =

1

3
(2φ2

1(z) + φ3(z)φ4(z)).

Thus 3φ2
1(z) + 3φ3(z)φ4(z) = 4φ2

1(z) + 2φ3(z)φ4(z). Then φ3(z)φ4(z) = φ2
1(z). Since

φ3 + φ4(z) = 2φ1(z). Thus φ3(z) = φ4(z) = φ1(z). A contradiction.
Assume now that φ1(z), φ3(z) and φ4(z) are not zeros of q4 of order 1. Recall that
{φ1(z), φ3(z), φ4(z)} is exactly the set of zeros of q4. Since φ1(z) ̸= φ3(z), then
φ1(z) = φ4(z).



54 J. Abidi

Because if φ1(z) ̸= φ4(z), then φ3(z) = φ4(z). Since φ1(z) = φ2(z) ̸= φ3(z), then
u(ξ, w) = |w − φ1(ξ)|2|w − φ3(ξ)|2, for each (ξ, w) ∈ G = D(z,R) × C, where R > 0
satisfying D(z,R) ⊂ D. Since u is a function of class C∞ and psh on the domain G,
we can prove that we have the condition φ1 = φ3 on D(z,R), or (φ1 + φ3) =

s1
2 is

constant on D(z,R).
Now since s1 is holomorphic nonconstant on D, then s1 is nonconstant on the open
Euclidean disc D(z,R). It follows that φ1 = φ3 on D(z,R). A contradiction, because
φ1(z) ̸= φ3(z). Consequently, φ1(z) = φ4(z). Therefore φ1(z) is a zero of q2 of order
1. Assume that φ1(z) = w1. We have φ1(z) = φ2(z) = φ4(z), φ1(z) ̸= φ3(z). It
follows that φ1(z) is a zero of q3 of order 2.
φ3(z) is not a zero of q3.
Now we use the classical relations between all the coefficients of a polynomial and

its zeros, we have φ1(z) + w2 =
2s′2(z)
3s′1(z)

= 2
3 (2φ1(z) + φ3(z)). Also 2φ1(z) + w2 =

3
4 (3φ1(z) + φ3(z)) and φ1(z) + w2 = 2

3 (2φ1(z) + φ3(z)). Then φ1(z) +
2
3 (2φ1(z) +

φ3(z)) =
3
4 (3φ1(z) +φ3(z)). Thus, 12φ1(z) + 8(2φ1(z) +φ3(z)) = 9(3φ1(z) +φ3(z)).

Consequently, φ1(z) = φ3(z). A contradiction. It follows that the assumption
φ1(z) ̸= φ3(z) is impossible. Consequently, φ1(z) = φ2(z) = φ3(z).
Now assume that φ4(z) ̸= φ1(z). Let w0 the zero of q2, w0 ̸= φ1(z). Note that φ1(z)
is a zero of the polynomial q2 because φ1(z) is a zero of q4 of order 2.
φ1(z) is a zero of q1 of order 3.
Therefore φ1(z) is a zero of q3 of order 2. Consequently, w0 is a zero of q3 of order 1.

We have w0 + φ1(z) =
2s′2(z)
3s′1(z)

= 2
3 (2φ1(z) + φ4(z)). Also 2φ1(z) + w0 = 3

4s1(z) =
3
4 (3φ1(z)+φ4(z)). Therefore, we have φ1(z)+

2
3 (2φ1(z)+φ4(z)) =

3
4 (3φ1(z)+φ4(z)).

Thus φ1(z) = φ4(z). A contradiction. Consequently, the assumption φ1(z) ̸= φ4(z)
is impossible. We conclude that φ1 = φ2 = φ3 = φ4 on D.
Step 2. s1 is constant on D.

Let (z, w) ∈ D × C, such that ∂2v
∂z∂w (z, w) ̸= 0. Assume that s′2(z) ̸= 0. We have

q1q2 = cq3q4, where c = 1
2 . Let w0 =

s′3(z)

2s′2(z)
be the only zero of q2. Note that

{φ1(z), φ2(z), φ3(z), φ4(z)} is the set of zeros of the holomorphic polynomial q1 on C.
If for example φ1(z) is a zero of q1 of order 1. Then φ1(z) is not a zero of q3 = q′1.
Since now q1q2 = 1

2q3q4, then φ1(z) is a zero of q4.
Now if φ1(z) is a zero of q1 of order 2. Then φ1(z) is a zero of q3 = q′1 of order 1. By
the fundamental relation q1q2 = 1

2q3q4, we obtain φ1(z) is a zero of q4. We conclude
that the set of zeros of q4 is {φ1(z), φ2(z), φ3(z), φ4(z)}.
Since now deg(q4) = 2 (because s′2(z) ̸= 0), then there exists j1, j2, j3, j4,
{j1, j2, j3, j4} = {1, 2, 3, 4}, such that φj1 = φj2 = φj3 ̸= φj4 on D, or φj1 = φj2
and φj3 = φj4 on D.
Suppose that we have φ1 = φ2 = φ3 ̸= φ4. Then φ1(z) is a zero of q1 of order 3. φ1(z)
is a zero of q3 of order 2.
w0 is a zero of q3 of order 1.
φ4(z) is not a zero of q3.
We have

2φ1(z) + w0 =
3

4
s1(z) =

3

4
(3φ1(z) + φ4(z)).



A Contribution on Real and Complex Convexity in Several Complex Variables 55

w0 =
s′3(z)

2s′2(z)
=

1

2
(φ1(z) + φ4(z)).

Thus 2φ1(z) +
1
2 (φ1(z) + φ4(z)) =

3
4 (3φ1(z) + φ4(z)). Therefore

5
2φ1(z) +

1
2φ4(z) =

9
4φ1(z) +

3
4φ4(z). Then φ1(z) = φ4(z). A contradiction. Consequently, the above

assumption is impossible. It follows that φj1 = φj2 and φj3 = φj4 onD, (for example).
We suppose without loss of generality that j1 < j2 and j3 < j4. Then u(z, w) =
|w − φj1(z)|2|w − φj3(z)|2, for (z, w) ∈ D × C.
Actually, we observe that φj1 = φj3 on D, or (φj1 + φj3) is constant on D. Suppose
that φj1 = φj3 on D. Then φ1 = φ2 = φ3 = φ4 on D. Since s′1 = 0 on D, then φ1 is

constant on D. Thus ∂2v
∂z∂w = 0 on D×C. A contradiction. Consequently, (φj1 +φj3)

is constant on D and observe that the product φj1φj3 is nonconstant on D.

Assume that s′2 = 0 on D. Then s′3 ̸= 0 on D, because ∂2v
∂z∂w ̸= 0 on D×C. The set of

zeros of q4 is {φ1(z), φ2(z), φ3(z), φ4(z)}. Since deg(q4) = 1, then φ1 = φ2 = φ3 = φ4

on D.
s′1 = 0 on D implies that φ1 is constant on D. Therefore, ∂2v

∂z∂w = 0 on D × C. It
follows that this case is impossible.
(II) implies (I). Obvious.

Remark 9 . Let F : C2 → C be holomorphic, a1, a2, a3, a4 ∈ C4 and b1, b2, b3, b4 ∈ C.
Define

v(z, w) = |[w −< F (z)/a1 >− b1][w −< F (z)/a2 >− b2] ·
·[w −< F (z)/a3 >− b3][w −< F (z)/a4 >− b4]|,

for (z, w) ∈ C2 × C. We can characterize all the conditions on a1, a2, a3, a4, b1, b2,
b3, b4, which ensure technical hypothesis for the plurisubharmonicity of v. Indeed, we
have the following of various behaviour.

Theorem 16. Let φ1, φ2, φ3, φ4 : D → C be holomorphic functions, D is a domain
of Cn, n ≥ 1.
Put u(z, w) = |w − φ1(z)||w − φ2(z)||w − φ3(z)||w − φ4(z)|, (z, w) ∈ D × C.

Let v = u2, s1 =

4∑
j=1

φj , s2 =
∑

1≤j<k≤4

φjφk, s3 =
∑

1≤j<k<s≤4

φjφkφs, s4 =

φ1φ2φ3φ4, (s1, s2, s3, s4 are holomorphic functions on D).
The following assertions are equivalent
(I) u (respectively v) is psh on D × C;
(II) We have the following three cases.
Case 1. s1, s2 and s3 are constant on D.
Case 2. s1 is nonconstant on D and φ1 = φ2 = φ3 = φ4 on D.
Case 3. s1 is constant on D, s2 is nonconstant on D and there exits j1, j2, j3, j4,
{j1, j2, j3, j4} = {1, 2, 3, 4}, j1 < j2, j3 < j4, with φj1 = φj2 and φj3 = φj4 on D.

Proof. Obvious by the above theorem.

Example. Let a1, a2, a3, a4 ∈ C2, A1, A2, A3, A4 ∈ Cm and F : Cn → C2 be a
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holomorphic function, n,m ≥ 1. Define

ψ(z, w) = | < w/A1 > −< F (z)/a1 >|| < w/A2 > −< F (z)/a2 >| ·
·| < w/A3 > −< F (z)/a3 >|| < w/A4 > −< F (z)/a4 >|,

for (z, w) ∈ Cn × Cm.
In a slightly different direction, we can show all the conditions formulated by the
constants a1, a2, a3, a4, A1, A2, A3, A4, which characterize the plurisubharmonicity
of ψ.

Example. Let N ≥ 2 and p(ξ1, ..., ξN , w) = (w−ξ1)...(w−ξN ), for (ξ1, ..., ξN ) ∈ CN ,
w ∈ C. Define F (ξ1, ..., ξN , w) = |p(ξ1, ..., ξN , w)|. Then for each Euclidean open ball
B(a,R) ⊂ CN , (a ∈ CN , R > 0), the function F is not psh on B(a,R)× C.

Remark 10. (I) Let g1(z) = z2, g2(z) = −z2, g3(z) = iz2, g4(z) = −iz2, z ∈ C. g1,
g2, g3 and g4 are holomorphic functions on C. Let

u1(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)|,

u2(z, w) = |w − g1(z)||w − g2(z)||w − g4(z)|,

u3(z, w) = |w − g1(z)||w − g3(z)||w − g4(z)|,

u4(z, w) = |w − g2(z)||w − g3(z)||w − g4(z)|,

u(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)||w − g4(z)|, (z, w) ∈ C2.

We have u1, u2, u3 and u4 are not psh functions on C2. But u is psh on C2.
(II) g1(z) = g2(z) = z + 1, g3(z) = g4(z) = −z + 1, z ∈ C.
g1, g2, g3 and g4 are holomorphic functions on C.
(g1 + g2 + g3 + g4) is constant on C.
(g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4) is non constant on C.
Let (z, w) ∈ C2. Put u(z, w) = |w−g1(z)||w−g2(z)||w−g3(z)||w−g4(z)| = |w4−4w3+
[6−2(z)2]w2−4w[1−(z)2]+[1−(z)2]2|. Observe that (g1g2g3+g1g2g4+g1g3g4+g2g3g4)
is nonconstant on C. But u is psh on C2, because

u(z, w) = |w − 1− z|2|w − 1 + z|2 = |(w − 1)2 − (z)2|2 = |h|2,

where h is a prh function on C2.

Question 8. Let N1, ..., Nk, s1,m1, ..., st,mt ∈ N\{0}, k, t ≥ 1 and g1, ..., gk,
θ1, ..., θt : Cn → C be prh functions. Put

u(z, w) = |w − g1(z)|N1 ...|w − gk(z)|Nk |ws1 − θm1
1 (z)|...|wst − θmt

t (z)|,

for (z, w) ∈ Cn ×C. Find conditions g1, ..., gk, θ1, ..., θt should satisfy so that u is psh
on Cn × C.

Question 9. Let N ∈ N\{0, 1} and A0, ..., AN−1 ∈ C. Define v(z, w) = |wN +

AN−1w
N−1z + ... + A1wzN−1 + A0zN |. Find all conditions on N, A0, ..., AN−1 such

that v is psh on C2.
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Conclude that we can characterize all the holomorphic polynomials q on C2, such that
F is psh on C2, where F (z, w) = |q(z, w)| for (z, w) ∈ C2.
Let p be a holomorphic polynomial on C2. Put F1(z, w) = |p(z, w)| and F2(z, w) =
|p(z, w)|, for (z, w) ∈ C2. Moreover, thanks to the above characterization, we can
prove that F1 is psh on C2 if and only if F2 is psh on C2.
In the following question, we recall some properties and sharp results in the framework
of complex analysis of the appeared function θ, defined by θ(z, w) = (w + z)N , for
N ∈ N\{0, 1} and (z, w) ∈ C2.

Question 10. Let N ∈ N\{0, 1}, A ∈ C\{0}, (B1, ..., Bn) ∈ Cn\{0} and s ∈ [1,+∞[.
Let g, f0, ..., fN−2 : D → C be continuous functions, where D is a domain on Cn.
Define ψ(z, w) = |(Aw + B1z1 + ...+ Bnzn)

N + g(z)|s and φ(z, w) = |(Aw + B1z1 +
...+Bnzn)

N +fN−2(z)w
N−2+ ...+f0(z)|, for (z, w) = (z1, ..., zn, w) ∈ D×C. Assume

that ψ is psh on D × C. Prove that g = 0 on D. Suppose that φ is psh on D × C.
Prove that fN−2 = ... = f0 = 0.
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