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1. Introduction

For a graph G, let V (G), E(G) be vertex and edge sets respectively and let e ∈ E(G).
We define e = uv, where u, v ∈ V (G) and the respective order and size of V (G) and
E(G) are |V (G)| and |E(G)|. For some M ⊆ E(G), M is an induced matching of G if
for all e1 = uiuj and e2 = vivj in M , ukvl /∈M , where k and l are from {i, j}. Induced
matching, a variant of the matching problem, was introduced in 1982 by Stockmeyer
and Vazirani [10] and has also been studied under the names strong matching [7] and
“risk free” marriage problem [8]. It has found theoretical and practical applications in
a lot of areas including network problems and cryptology [3]. For more on induced
matching and its applications, see [2], [3], [4], [5] and [11].

The size |M | of an induced matching M of G is a positive integer and translates
as the maximum induced matching number Max(G) (or strong matching number) of
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G if |M | is maximum. Obtaining Max(G) is NP−hard, even for regular bipartite
graphs [4]. However, Max(G) of some graphs have been found in polynomial time
such as the cases in [3], [6].

A grid Gn,m is the Cartesian product of two paths Pn and Pm, resulting in n-rows
and m-columns. Marinescu-Ghemaci in [9], obtained the Max(G) for Gn,m, grid
where both n,m are even; either of n and m is even and for quite a number of grids
Gn,m where nm is odd, which is called the odd grid in [1]. Marinescu-Ghemaci [9] also
gave useful lower and upper bounds and conjectured that the Max(G) of grids can be
found in polynomial time and also by combining the maximum induced numbers of
partitions of odd grids, Marinescu-Ghemaci confirmed that for any odd grid G ≡ Gn,m,
Max(G) ≤

⌊
nm+1

4

⌋
. This bound was improved on in [1] for the case where n ≥ 9 and

m ≡ 1 mod 4.
In this paper, the Marinescu-Ghemaci’s bound for the case where n ≥ 9 and m ≡ 3

mod 4 is considered and more compact values are obtained. The results in this work,
combined with some of the results in [9], confirm the maximum induced matching
numbers of certain graphs, whose lower bounds were established in [9].

2. Definitions and Preliminary Results

Grid, Gn,m, as defined in this work, is the Cartesian product of paths Pn and Pm with
V (Pn) = {u1, u2, · · · , un} and V (Pm) = {v1, v2, · · · , vm}. We adopt the following
notations which are similar to those in [1]:

Vi = {u1vi, u2vi, · · · , unvi} ⊂ V (Gn,m), i ∈ [1,m],

Ui = {uiv1, uiv2, · · · , uivm} ⊂ V (Gn,m), i ∈ [1, n].

For edge set E(Gn,m) of Gn,m, if (uivj ukvj) ∈ E(Gn,m) and (uivj uivk) ∈ E(Gn,m),
we write u(i,k)vj ∈ E(Gn,m) and uiv(j,k) ∈ E(Gn,m) respectively.

A saturated vertex v is any vertex on some edge in M , otherwise, v is unsaturated,
cf. [1]. We define v as saturable if it can be saturated relative to the nearest saturated
vertex. Any vertex that is at least distant-2 from the nearest saturated vertex is
saturable. By this definition, therefore, it is clear that a saturated vertex is at first
saturable. However, not every saturable vertex is saturated. The set of all saturable
vertices on a graph G is denoted by Vsb(G) while the set of saturated vertices is Vst(G).
Clearly, |Vst(G)| is even and Vst(G) ⊆ Vsb(G). Free saturable vertex set (FSV ) is the
set of saturable vertices which can not be on any members of M . In other words,
v ∈ FSV is a saturable vertex of graph G, which is not adjacent to some saturable
vertex u ∈ G. Note that FSV = Vsb\Vst. Let G be a Gn,m grid. We define G|k| as a
Gn,k subgraph of G induced by {Vi+1, Vi+2, · · · , Vi+k}. An unsaturated vertex v ∈ G
is unsaturable if v /∈ FSV and v /∈ Vsb(G). Furthermore, for positive integers a and b,
a < b, [a, b] := {a, a + 1, · · · , b}.

The following results from [9] on G, a Gn,m grid, are useful in this work:

Lemma 2.1. Let m,n ≥ 2 be two positive integers and let G be a Gn,m grid. Then,
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(a) If m ≡ 2 mod 4 and n odd then |Vsb(G)| = mn+2
2 ; and |Vsb(G)| = mn

2 otherwise;

(b) for m ≥ 3, m odd, |Vsb(G)| = nm+1
2 , for n ∈ {3, 5}.

Theorem 2.2. Let G be a Gn,m grid with 2 ≤ n ≤ m. Then,

(a) if n even and m even or odd, then Max(G) =
⌈
mn
4

⌉
;

(b) if n ∈ {3, 5} then for

(i) m ≡ 1 mod 4, Max(G) = n(m−1)
4 + 1,

(ii) m ≡ 3 mod 4, Max(G) = n(m−1)+2
4 .

The following theorem is the statement of the bound given by Marinescu-Ghemaci
[9].

Theorem 2.3. Let G be a Gn,m grid, m,n ≥ 2, mn odd. Then Max(G) ≤
⌊
mn+1

4

⌋
.

3. Maximum Induced Matching Number of Odd
Grids

The following lemma and the remark describe the importance of the saturation status
of certain vertices in G5,p grid, where p ≡ 2 mod 4.

Lemma 3.1. Let G be a Gn,m grid and let {Vi+1, Vi+2, · · · , Vi+p} ⊂ G induce G|p|,
a G5,p subgrid of G, where p ≡ 2 mod 4. Suppose that M1, is an induced matching
of G|p| and that for u3vi+1 ∈ Vi+1 ⊂ V (G|p|), u3vi+1 /∈ Vst(G

|p|). Then, Vst(G
|p|) ≤

10k + 4, for positive integer k, where p = 4k + 2 and M1 is not a maximum induced
matching of G|p|.

Proof. For a positive integer k, let p = 4k + 2, G|2| and G|p−2| be partitions of G1,
induced by {Vi+1, Vi+2} and {Vi+3, Vi+4, · · · , Vi+p}, respectively. Since u3vi+1 is not
saturated in G|2|, it easy to check that |Vsb(G|2|)| = 5. From [9], |Vsb(G|p−2|)| =
|Vst(G|p−2|)| = 10k. Thus |Vsb(G|p|)| ≤ |Vsb(G|2|)| + |Vsb(G|p−2|)| ≤ 10k + 5 and
therefore, |Vst(G|p|)| ≤ 10k + 4 since |Vst(G)| is even, for any graph G. This is a
contradiction since by [9], |Vst(G|p|)| = 10k + 6.

Remark 3.2. It should be noted that M1 in Lemma 3.1 will still not be a maximum in-
duced matching of G|p| if for the vertex set A = {u1vi+1, u5vi+1, u1vi+p, u3vi+p, u5vi+p}
⊂ V (G|p|), any member of A is unsaturated.

Lemma 3.3. Suppose u(1,2)vi, u5v(i−1,i) ∈ M or u(1,2)vi, u5v(i,i+1) ∈ M , where M
is an induced matching of G, a G5,m grid, m ≡ 3 mod 4, m ≥ 23 and 1 < i < m,
i /∈ {4,m− 3}. Then M is not a maximum induced matching of G.
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Proof. Let G be partitioned into G|m(1)| and G|m(2)|, which are induced respectively
by A = {V1, V2, · · · , Vi} and B = {Vi+1, Vi+2, · · · , Vm}. Suppose that M is a maximum
induced matching of G.
Case 1: i ≡ 1 mod 4.
Let m = 4k + 3 and set i = 4t + 1, where k ≥ 5 and t > 0. Then, |m(1)| ≡ 1 mod 4
and |m(2)| ≡ 2 mod 4. Since u1vi, u2vi, u5vi and u5vi−1 are saturated vertices in Vi
and Vi−1, then the only FSV member on Vi−1 is u3vi−1. Suppose that u3vi−1 remains
unsaturated. Let G|m(3)| ⊂ G|m(1)| be induced by {V1, V2, · · · , Vi−2}, where |m(3)| ≡ 3
mod 4. By [9], |Vst(G|m(3)|)| = 10t−4. Thus, |Vst(G|m(1)|)| ≤ 10t. Suppose that u3vi−1
is saturated, then, u3v(i−1,i−2) ∈ M . Thus, u3vi−3 ∈ Vi−3 ⊂ G|m(4)| is unsaturable,

where G|m(4)| is G|m(3)|\Vi−2. Note that |m(4)| ≡ 2 mod 4. From Lemma 3.1,
therefore, |Vst(G|m(4)|)| ≤ 10t − 6 and thus, |VstG|m(1)|| ≤ 10t − 6 + 6 = 10t. Now,
since u1vi, u2vi and u5vi are saturated vertices in Vi, then, u3vi+1, u4vi+1 ∈ V (G|m(2)|)
are saturable vertices in G|m(2)|.
Claim: Edge u(3,4)vi+1 belongs to M .
Reason: Suppose that both u3vi+1 and u4vi+1 are not saturated, then Vi+1 contains
no saturable vertices. Let G|m(2)|\ {Vi+1} = G|m(5)|, where |m(5)| ≡ 1 mod 4.
Thus, |Vst(G)| ≤ |VstG|(m(1))|| + |Vst(G|m(5)|)| = 10k + 2, which is less than the
required saturated vertices by 4 and hence the claim. Now, u(3,4)vi+1 belongs to

M . Clearly for G|m(5)| defined above, |Vsb(G|m(5)|)| = 10(k − t) + 3 and suppose
u3vi+1, u4vi+1 ∈ Vst(G), then |Vst(G)| ≤ 10k + 5. In fact, |Vst(G)| = 10k + 4. Thus
establishing the first part of the case that with u(1,2)vi,u5v(i−1,i) ∈M , M 6= Max(G).

For the second part of the case, suppose that u(1,2)vi, u5v(i,i+1) ∈M . Let G|n(1)| =

G|m(1)|\ {Vi} and G|n(2)| = G|m(2)| ∪ {Vi}. Now, |n(1)| ≡ 0 mod 4 and |n(2)| ≡ 3
mod 4. Consequently, |Vst(G|n(2)|)| = 10(k − t) + 6. Now, on Vi−1 ⊂ G|n(1)|, only
vertices u3vi−1 and u4vi−1 are saturable. Suppose they are both not saturated after
all. Let G|n(3)| ⊂ G|n(1)| be induced by {V1, V2, · · · , Vi−2}, where |n(3)| ≡ 3 mod 4.
|Vst(G|n(3)|)| = 10t−4. Thus |Vst(G)| = 10k+2. Therefore, M requires four saturated
vertices to be a maximum induced matching of G. Now, |Vsb(G|n(3)|)| = 10t − 2,
and thus, V (G|n(3)|) contains two extra FSV vertices, say, v1, v2 which are not
adjacent. Thus, the maximum number of saturable vertices from the vertex set
{v1, v2, u3vi−1, u4vi−1} is 2. Therefore, |Vst(G)| ≤ 10k + 4, which is a contradiction.
Case 2: i ≡ 2 mod 4.
Let G|p(1)| and G|p(2)| be partitions of G induced by {V1, V2, · · · , Vi} and {Vi+1, Vi+2,
· · · , Vm}, with m = 4k + 3 and i = 4t + 2. Let u(1,2)vi and u5v(i−1,i) ∈ M . Since

u(1,2)vi belongs in M of G, then u3vi cannot be saturated. Thus, |Vst(G|p(2)|)| ≥
10(k − t) + 2 for M to be maximal. It can be seen that |p(2)| ≡ 1 mod 4. Now,
u3vi+1 and u4vi+1 are saturable vertices in Vi+1. Suppose both of them are not
saturated, then for G|p(3)| induced by {Vi+2, Vi+3, · · · , Vm}, where |p(3)| ≡ 0 mod 4,
|Vst(G|p(3)|)| ≤ 10(k − t). Thus u3vi+1 and v4vi+1 are saturable vertices and in fact,
u(3,4)vi+1 ∈M . On Vi+2, therefore, there exists three saturable vertices u1vi+1, u2vi+2

and u5vi+5. Suppose none of these three vertices are saturated. Then, |Vst(G|p(3)|)| ≤
|Vst(G|p(4)|)|+ 2, with G|p(4)| induced by {Vi+3, · · · , Vm} and |p(4)| ≡ 3 mod 4 and
thus, |Vst(G|p(2)|)| ≤ 10(t− k)− 2. Therefore it requires extra four saturated vertices
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for M to be maximum. There exist two other saturable vertices, v1, v2 ∈ V (G|p(4)|)
(since Vst(G

|p(4)|) = 10(k − t) − 4 and Vsb(G
|p(4)|) = 10(k − t) − 2). Clearly, v1, v2

are not adjacent, else they would have formed an edge in M . Suppose v1, v2 ∈ Vi+3.
For v1 and v2 to be saturated, they have to be u5vi+3 and one of u1vi+3 and u2vi+3.
Thus, u5vi+2,i+3 ∈ M and one of u1v(i+2,i+3) u2v(i+2,i+3) or u(1,2)vi+2 belongs to

M . Let G|p(5)| be induced by {Vi+4, · · · , Vm}, where |p(5)| ≡ 2 mod 4. Now, since
v5v(i+2,i+3) ∈ M , then u5vi+5 ∈ Vi+4 is unsaturable and therefore, by Remark 3.2,

|Vst(G|p(5)|)| = 10(k− t− 1) + 4 and thus, |Vst(G|p(2)|)| = 10(k− t), which is less than
required. The case of u5v(i,i+1) ∈ M is the same as the case of u5v(i−1,i) ∈ M for
i ≡ 2 mod 4.
Case 3: i ≡ 0 mod 4, i ≥ 6 or i ≤ m − 5, with u(1,2)vi, u5v(i−1,i) ∈ M . Let G|r(1)|

and G|r(2)| be partitions of G which are induced respectively by {V1, V2, · · · , Vi} and
{Vi+1, Vi+2, · · · , Vm}. Since i ≡ 0 mod 4, then |r(1)| ≡ 0 mod 4, while |r(2)| ≡ 3
mod 4. Also, u5v(i−1,i) ∈ M , implies u5vi−1 is unsaturable. Since i− 2 ≡ 2 mod 4,

then by Lemma 3.1 and Remark 3.2, |Vst(G|r(1)|)| ≤ 10t − 2, implying that for M
to be maximal, |Vst(G|r(2)|)| ≥ 10(k − t) + 8. It can be seen that Vi+1 has two
only saturable vertices u3vi+1, u4vi+2 left. It should also be noted that if any of
u3vi+1 and u4vi+2 is saturated, then u3vi+3 can not be saturated in G|r(3)|, a subgrid
of G|r(2)| induced by {Vi+2, Vi+3, · · · , Vm}, with |r(3)| ≡ 2 mod 4. Thus suppose
u3vi+1, u4vi+2 ∈ Vst(G), then |Vst(G)| ≤ 10(k − t) + 4. Likewise, if u3vi+1, u4vi+2 /∈
Vst(G), |Vst(G)| ≤ 10t− 2 + 10(k− t) + 6. The case of u5v(i,i+1) ∈M follows the same
argument as the case of u5v(i−1,i) ∈M .

Figure 1: A Grid G ≡ G5,23 with Max(G) = 28, u(1,2)v1, u(1,2)v4 ∈M of G

Remark 3.4.

(a) In the case of i ≡ 0 mod 4 in Lemma 3.3, M remains a maximum induced
matching when i = 4 or when i = m− 3 as seen in Figure 1 of Max(G) = 28 of
G5,23.
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(b) It should be noted that the case of i ≡ 3 mod 4 has been taken care of by the
case of i ≡ 1 mod 4 by ‘flipping’ the grid from right to left or vice versa.

(c) From Lemma 3.3, we note that if for some induced matching M of G5,m, m ≡ 3
mod 4, u(1,2)vi and u5v(i−1,i) (or u5v(i,i+2)) ∈ M , then M is not a maximal
induced matching of G for any 1 < i < m.

Next we investigate some induced matching M of G5,m if it contains u(1,2)vi and
u(4,5)vi.

Lemma 3.5. Suppose G = G5,m, where m ≥ 23 and m ≡ 3 mod 4. Let u(1,2)vi,-
u(4,5)vi ∈M , an induced matching of G and 1 < i < m, i 6≡ 0 mod 4 then M is not
a maximum induced matching of G.

Proof. Let M be an induced matching of G = G5,m. Suppose that i ≡ 2
mod 4. Let G|m(1)| and G|m(2)| be partitions of G induced by {V1, V2, · · · , Vi} and
{Vi+1, Vi+2, · · · , Vm}. Since u(1,2)vi, u(4,5)v1 ∈ M , then, u3vi is unsaturated. Let

i = 4t + 2, for some positive integer t, by Lemma 3.3, |Vst(G|m(1)|)| = 10t + 4. Now,
only u3vi+1 is saturable on Vi+1. Let G|m(3)| ⊂ G|m(2)|, induced by {Vi+2, · · · , Vm}.
Clearly |m(3)| = |m(2)| − 1 = 4(k− t). Therefore, |Vst(G|m(3)| ∪u3vi)| ≤ 10(k− t) + 1,
which, in fact, is 10(k − t). Thus, |Vst(G)| = 10k + 4.

Now, suppose i ≡ 1 mod 4. Let G|n(1)| be induced by {V1, V2, · · · , Vi} and let
G|n(2)| be induced by {Vi+1, Vi+2, · · · , Vm}. Since |n(1)| = 4t+ 1, it is easy to see that
|n(2)| ≡ 2 mod 4 and hence, |n(2)| = 4(k − t) + 2.
Claim: For M to be maximum, both u3vi−1 and u3vi+1 must be saturated.
Reason: Suppose, say u3vi−1 is not saturated. Then, no vertex on Vi−1 is sat-
urable. Now, let {V1, V2, · · · , Vi−2} induce grid G|n(3)|, with |n(3)| ≡ 3 mod 4.
Then, |Vst(G|n(3)|)| = 10t − 4, and thus, G|n(1)| = 10t. Also, let G|n(4)| be in-
duced by {Vi+2, Vi+3, · · · , Vm}. Since |n(4)| = 4(k − t) + 1, then for G|n(4)| + u5vi+1,
|Vsb[(G|n(4)|) ∪ u3vi+1]| = 10(k − t) + 4. Therefore, |Vst(G)| ≤ 10k + 4. Now suppose
u3v(i−2,i−1) ∈ M and let G|n(5)| be induced by {V1, V2, · · · , Vi−3}, with |n(5)| ≡ 2

mod 4. By Lemma 3.1, |Vst(G|n(5)|)| = 10t− 6. Thus, |Vst(G|n(1)|)| = 10t and there-
fore, |Vst(G)| ≤ 10k + 4, which is less than required number by at least 2. Hence,
M 6= Max(G).

Remark 3.6. Like in Remark 3.4, for i ≡ 0 mod 4, it can be seen that
u(1,2)v1, u(1,2)v4 or u(1,2)vm−3, u(1,2)vm can be in M if M is a maximum induced
matching of G. Also given i ≡ 0 mod 4 and 4 < i < m − 3, for at most one i in
[4,m− 3] for which u(1,2)vi can be a member of maximal M .

Next we investigate the maximality of the induced matching of G = G5,m, m ≡ 3
mod 4.

Lemma 3.7. Let u(1,2)vi, u4v(i−1,i) ∈M or u(1,2)vi, u4v(i,i+1) ∈M , where M is an
induced matching of G, a G5,m grid, m ≡ 3 mod 4, m ≥ 23 and 1 < i < m, i 6≡ 0
mod 4. Then M is not a maximum induced matching of G.



On Maximum Induced Matching Numbers of Special Grids 11

Proof. Case 1: i ≡ 1 mod 4.
Suppose that m = 4k + 3 and i = 4t + 1, t ≥ 1. Let G|m(1)| and G|m(2)| be two
partitions of G, induced by {V1, V2, · · · , Vi} and {Vi+1, Vi+2, · · · , Vm}, respectively.
Since u(1,2)vi, u4v(i−1,i) ∈M , then there is no other saturated vertex on both of Vi−1
and Vi. Let G|m(3)| ⊂ G|m(1)| be a grid induced by {V1, V2, · · · , Vi−2}. Now, n(3) ≡ 3
mod 4. Therefore, |Vst(G|m(3)|)| = 10t − 4 and hence, |Vst(G|m(1)|)| = 10t. Now,
|m(2)| ≡ 2 mod 4, since u(1,2)vi ∈ M , then u1vi+1 ∈ Vi+1 is unsaturable. From

a previous result, |Vst(G|n(2)|)| = 10(k − t) + 4 and thus, |Vst(G)| = 10k + 4. For
u4v(i,i+1) ∈M , let G|n(1)| and G|n(2)| be induced by G|m(1)|\Vi and G|m(2)|∪Vi. Then,
|n(1)| ≡ 0 mod 4 and |n(2)| = 4(k − t) + 3. It can be seen that on Vi−1, only u3vi−1
and u5vi−1 are saturable vertices.
Claim: Vertices u3vi−1 and u5vi−1 are not saturable for M to be maximal.
Reason: Suppose without loss of generality, that any of u3vi−1 and u5vi−1 is satu-
rated, say u5vi−1. Then u5v(i−2,i−1) ∈M . This implies that v5vi−3 is not saturable

in Vi−3. Now {V1, V2, · · · , Vi−3} induces a grid G(|n(4)|) and |n(4)| ≡ 2 mod 4. Then,
|Vst(G|m(4)|)| = 10t−6 and thus, |Vst(G|n(1)|)| = 10t−4. Now, since |n(2)| = 4(k−t)+3,
|Vst(G|m(2)|)| = 10(k − t) + 6 and therefore, |Vst(G)| = 10k + 2.
Case 2: i ≡ 2 mod 4.
Let G|n(1)| and G|n(2)| be two partitions of G, induced by {V1, V2, · · · , Vi} and
{Vi+1, Vi+2, · · · , Vm} respectively. Since u(1,2)vi and u4v(i−1,i) ∈ M , vertex u5vi ∈
Vsb(G

|n(1)|), and therefore, |VstG|n(1)|| = 10t + 4, where |n(1)| = 4t + 2. Also, only
u3vi+1 and u5vi+1 are saturable on Vi+1. Suppose without loss of generality, that
both u3vi+1 and u5vi+1 are saturated and thus, u3v(i+1,i+2), u5v(i+1,i+2) ∈M . Now,

suppose that G|n(4)| is induced by {Vi+3, Vi+4, · · · , Vm}, with |n(4)| = 4(k− t− 1) + 3.
By following the techniques employed earlier, it can be shown that |Vst(G)| ≤
|Vst(G|n(1)|)|+ |Vst(G|n(2)|)| ≤ 10k + 4. The u4v(i,i+4) case, has the same proof as the
u4v(i−1,i) case.

Figure 2: A G ≡ G5,23 Grid with Max(G) = 28, u1,2vi ∈M, i ≡ 0 mod 4
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Remark 3.8.

(a) There can be only one edge u(1,2)vi ∈M for which M is the maximum induced
matching of G5,m, if M contains u(1,2)vi and u4v(i−1,i) (or u4v(i,i+1)), and in
this case, i ≡ 0 mod 4 as shown in Figure 2.

(b) It should be noted that the proof of the case i ≡ 1 mod 4 in Lemma 3.7 will
hold for i ≡ 3 mod 4 by flipping the grid from right to left.

The previous results and remarks yield the following conclusion.

Corollary 3.9. Suppose that m ≥ 23 and M is the maximum induced matching of G,
some G5,m grid. Then, if for at most some positive integer i, 1 < i < m, u(1,2)vi ∈M ,
then, i ≡ 0 mod 4.

Lemma 3.10. Let M be a matching of G5,m with m ≡ 3 mod 4 and let u(1,2)vi,
u(1,2)vj ∈ M , 1 < i < j < m, such that i ≡ 0 mod 4 and j ≡ 0 mod 4, then M is
not a maximum induced matching of G.

The claim in Lemma 3.10 can easily be proved using earlier techniques and Lemma
3.1 and Remark 3.2.

Remark 3.11. It should be noted from the previous results and from Corollary 3.9
that if M is the maximum induced matching of G5,m, m ≡ 3 mod 4, then at most,
M contains two edges of the form u(1,2)vi, u(1,2)vj and j can only be 4 when i = 1 or
i can only be m− 3 when j = m.

Theorem 3.12. Let M be the maximum induced matching of G, a G5,m grid, with
m ≥ 7, m = 4k + 3 and k ≥ 1. Let M contain u(1,2)v1 and u(1,2)v4 (or u(1,2)vm−3
and u(1,2)vm). Then there are at least 2k + 2 saturated vertices on U1 ⊂ G.

Proof. For u(1,2)v1 and u(1,2)v4 to be in M , either u(4,5)v4 ∈ M or u5v(3,4) ∈ M .

Now, let {V6, V7, · · · , Vm} induce G|m(1)| ⊂ G. Clearly, |m(1)| ≡ 2 mod 4 and
|Vst(G|m(1)|)| = 10k − 4.

Let G|m(1)|\ {u1v6, u1v7, · · · , u1vm} induce G|m(2)| ⊂ G|m(1)|. Then, G|m(2)| is
a G4,m−5 subgraph of G|m(1)|. Now, |Vst(G|m(2)|)| ≤ 8k − 4. Thus for V (U1) ⊂
V (G|m(1)|), |V (U)| ≥ 2k. Thus, U1 contains at least 2k + 2 (i.e. m−1

2 ) saturated
vertices.

Next we investigate G3,m, where m ≡ 3 mod 4.

Lemma 3.13. Suppose that G is a G3,m grid with m ≡ 3 mod 4 and M is an induced
matching of G3,m, with

{
u(1,2)vi, u(1,2)vi+2, u(1,2)vj , u(1,2)vj+2

}
∈ M and i + 2 ≥ j.

Then M is not a maximum induced matching of G.

Proof. Suppose i+ 2 ≥ j. Since m = 4k + 3, |Vsb(G)| = 6k + 5 and |Vst(G)| = 6k + 4.
Thus, G contains at most one FSV vertex. Now from the conditions in the hypothesis,
it is clear that u3vi+1 and u3vj+1 are FSV members in G, which is a contradiction.
Same argument hold if i + 2 = j since both u3vi+1 and u3vi+3 are FSV vertexes in
G.
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Remark 3.14. Suppose that Gn is G3,n, a subgrid of G3,m and induced by
{Vi+1, Vi+2, · · · , Vi+n} and G′ is a subgraph of G, with G′ = Gn + {u3vi, u3vi+n+1},
then the following are easy to verify. For

(a) n ≡ 0 mod 4, |Vst(G′)| ≤ |Vsb(Gn)|+ 2.

(b) n ≡ 1 mod 4, |Vst(G′)| ≤ |Vsb(Gn)|+ 2.

(c) n ≡ 2 mod 4, |Vst(G′)| = |Vsb(Gn)|.

(d) n ≡ 3 mod 4, |Vst(G′)| ≤ |Vsb(Gn)|+ 1.

Lemma 3.15. Let u(1,2)vj , u(1,2)vj+3, u(1,2)vk, u(1,2)vk+3, u(1,2)vl, u(1,2)vl+3 be in M
an induced matching of G a G3,m grid and m ≡ 3 mod 4. Then M is not maximum
induced matching of G.

Proof. Case 1: j + 3 = k and l = k + 3.
Suppose m = 4p + 3 and G|m(1)| is a subgraph of G, induced by {Vj−1, Vj , · · · , Vi+4}.
Then |m(1)| = 12 and u3vj−1, u3vi+4 ∈ FSV . For one of u3vj−1 and u3vi+4 to be
relevant for M to be a maximum induced matching of G, say u3vj−1, then for G|m(2)|,
induced by {V1, V2, · · · , Vj−2}, |Vsb(G|m(2)|)|must be odd, which can only be if j−2 ≡ 3
mod 4. Suppose j − 2 ≡ 3 mod 4, then |Vst(G|m(2)|) + u3vj−1| ≤ |Vsb(G|m(2)|)|+ 1 =
6q + 6, where |m(2)| = 4q + 3, for q ≥ 1, since |m(1)| = 12 and |n(2)| ≡ 3 mod 4.
Now let G|m(3)| = G|m(1)| ∪ G|m(2)|, where |m(3)| = |m(1)| + |m(2)| ≡ 3 mod 4
and G|m(4)| ⊂ G be defined as a subgrid of G induced by {Vi+5, Vi+6, · · · , Vm}.
Clearly, |m(4)| ≡ 0 mod 4. Since |Vsb(G|m(4)|)| = |Vst(G|m(4)|)|, which is even,
then |Vst(G|m(4)| ∪ u3vi+4)| = |Vst(G|m(4)|)| = 6p − 6q − 18. It can be seen that
|Vst(G|m(1)|)\ {u3vj−1, u3vl+4} | = 14. Therefore, |Vst(G)| ≤ 6p + 2 instead of 6p + 4,
and hence a contradiction.
Case 2: j + 3 < k and k + 3 < l.
As in Case 1 and without loss of generality, let j−2 ≡ 3 mod 4 and let G|m(2)| still be
induced by {V1, V2, · · · , Vj−2}. Also, let G|m(4)| be induced by {Vl+5, Vl+6, · · · , Vm},
and set |m(4)| ≡ 3 mod 4. Thus, u3vj−1 and u3vi+4 are both relevant for M to be
a maximum induced matching of G, |Vst(G|m(2)| ∪ Vj−1)| = |Vsb(G|m(2)|)| + 1 and

|Vst(G|m(4)| ∪ Vl+4)| = |Vsb(G|m(4)|)|+ 1. Set G|m(2)| ∪ Vj−1 = G|m(2+)| and G|m(4)| ∪
Vi+4 = G|m(4+)| also let {Vj , Vj+1, Vj+2, Vj+3} and {Vi, Vi+1, Vi+2, Vi+3} induce G|m(5)|

and G|m(6)|, respectively. Furthermore, let G|m(5+)| = G|m(5)| ∪ Vj+4 and G|m(6+)|

contain, say, h columns of Vi in all, where h ≡ 2 mod 4. Therefore, for G|(m(7))| =
G\{G|m(2+)| ∪G|m(4+)| ∪G|m(5+)| ∪G|m(6+)|}, |m(7)| = m − h = b ≡ 1 mod 4. Let
b = 4a + 1, for some positive integer a and let G|m(4)| ⊂ G|m(7)|, where G|m(7)| is
induced by {Vk, Vk+1, Vk2 , Vk+3}. Certainly, u3vk−1, u3vk+4, u3vj+4, u3vl−1 ∈ Vsb(G).

Now, let G|(4)| be induced by {Vk, Vk+1, Vk+2, Vk+3} and G|4
++| be induced by G|(4)|∪

{Vk−1, Vk+4}, with |4 + +| = 6. So, b− 6 ≡ 3 mod 4, which is odd and thus can only
be the sum of an even and an odd positive integer. Therefore, let G|m(8)| and G|m(9)|

be induced by {Vj+5, Vj+6, · · · , Vk−2} and {Vj+5, Vj+6, · · · , Vl−2}, respectively, with
|m(8)|+ |m(9)| = b. Suppose thus, that |m(8)| ≡ 0 mod 4, then, |m(9)| ≡ 3 mod 4
and suppose |m(8)| ≡ 1 mod 4, then |m(9)| ≡ 2 mod 4. For |m(8)| ≡ 0 mod 4, let
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G|m(10)| = G|m(2+)|+|m(5+)| be G|m(2+)| ∪G|m(5+)| and G|m(11)| = G|m(6+)|+|m(4+)| be
G|m(6+)|∪G|m(4+)|, where |m(2+)|+ |m(5+)| = 4q+ 9 and |m(4+)|+ |m(6+)| = 4r+ 9,
where |m(4)| = 4r + 3. Therefore, as defined, b = |m(7)| = 4p− 4q − 4r− 15 and thus
b−6 = 4(p−q−r−6)+3. Set p−q−r−6 = f . Now, for |m(8)| and |m(9)|, if |m(8)| = 4g,
for some positive integer g, then |m(9)| = 4(f − g) + 3. The maximal values of the

subgrid of G is: |Vst(G)| ≤ |Vst(G|m(2+)|∪G|m(5)|)|+ |Vst(G|m(8)|+{u3vj+4, u3vk−1})|
+ |Vst(G|m(4)|)|+ |Vst(G|m(9)|+ {u3vk+4, u3vl−1})|+ |Vst(G|m(6)| ∪G|m(4+)|)| ≤ 6p+ 2,
which is less than 6p + 4 and hence a contradiction. For |m(8)| ≡ 1 mod 4, and
|m(9)| ≡ 2 mod 4, we have |m(8)| = 4g + 1 and hence |m(9)| = 4(f − g) + 2 and
|Vst(G|m(9)| ∪ {u3vk+4, u3vl−1})| = 6(f − g) + 4 and thus, |Vst(G)| ≤ 6p + 2.
Case 3: j + 3 = k or k + 3 = i.
Suppose as in Case 2, j − 2 ≡ 3 mod 4 and m − (i + 4) ≡ 3 mod 4. Let G|n(1)| ⊂
G, a G3,9 subgrid of G be induced by {Vj−1, vj , · · · , Vj+7}. Then for G|n(2)| =
G|m(2)| ∪ G|n(1)|, |n(2)| = |m(2)| + |n(1)|, |n(2)| ≡ 0 mod 4. Likewise, suppose
{Vi−1, Vi, · · · , Vm} induces G|n(3)|, for which |n(3)| ≡ 1 mod 4. If |n(2)| and |n(3)|
are 4q and 4r + 1 respectively, then |n(4)| ≡ 2 mod 4. So far, G|n(4)|, is induced
by {Vi+8, Vi+9, · · · , Vl−2} and by Remark 3.14, |Vst(G|n(4)|) + {u3vj+7, u3vl−1} | =
|Vsb(G|n(4)|)|. By a summation similar to the one at the end of Case 2, |Vst(G)| ≤
|VstG|n(2)||+ |Vst(G|n(4)|)|+ |Vst(G|n(3)|)| ≤ 6p + 2.

Remark 3.16.

(a) By following the technique employed in Lemma 3.15, it can be established that
given u(1,2)vi, u(1,2)vi+2 ∈ M and u(1,2)vj , u(1,2)vj+2 ∈ M of G, a G3,m grid,
m ≡ 3 mod 4, i + 2 ≤ j, then M is not a maximum induced matching of G.

(b) Let M be an induced matching of G, a G3,m grid, and i be some fixed positive
integer. Suppose u(12)v, i + 8(n) ∈M , for all non-negative integer n for which
1 ≤ i + 8(n) ≤ m. Let M be the maximum induced matching of G. Then,

(i) if i > 1, then i− 1 is either 2, 3, 4 or 6;

(ii) if i + 8(n) < m, for the maximum value of n, then m− (i + 8(n)) is either
2, 3, 4 or 6.

Based on the results so far, we note that if M is the maximum induced matching
of G, a G3,m grid, m ≡ 3 mod 4,m ≥ 11, the maximum number of edges of the type
u(1,2)vk that is contained in M , k, a positive integer, is k + 2 when m = 8k + 3 and
k + 3 when m = 8k + 7.

It can be easily established that for H that is a Gk,m grid, with k ≡ 0 mod 4 and
m ≡ 3 mod 4, which is induced by {U1, U2, · · · , Uk}, if M1 is a maximum induced
matching of H, then, the least saturated vertices in Uk is m−1

2 . The next result
describes the positions of the members of M1 in E(H) if Uk contains m−1

2 saturated
vertices.

Lemma 3.17. Let H be a Gk,m grid with k ≡ 0 mod 4 and m ≡ 3 mod 4 and let
Uk contain the least possible, m−1

2 , saturated vertices for which N remains maximum
induced matching of H. Then, for any adjacent vertices v′, v′′ ∈ Uk, edge v′v′′ /∈M .
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Proof. Induced by {U1, U2, · · · , Uk−2} and {Uk−1, Uk} respectively, let G
|m|
1 and

G
|m|
2 be partitions of H with k − 2 ≡ 2 mod 4. It can be seen that |Vst(G|m|1 )| =

|Vsb(G|m|1 )| = km−2m+2
2 . Since |Vst(H)| = km

2 , then |Vst(G|m|2 )| ≤ m−1. Now, let G
|m|
3

be a G1,m subgrid (a Pm path) of H, induced by Uk. By the hypothesis, Uk contains
maximum of m−1

2 saturated vertices. Now, let ukvi, ukvi+1 be adjacent and saturated

vertices of G
|m|
3 . Then there are m−5

2 other saturated vertices on G
|m|
3 . Without loss

of generality, suppose that each of the remaining m−5
2 saturated vertices in G

|m|
3 is

adjacent to some saturated vertex in Uk−1. Now, suppose uk−1vj is a saturable vertex
in Uk−1 and that v ∈ V (H), such that uk−1vj v ∈ M1. Now, v /∈ Uk, since all the
saturable vertices in Uk is saturated. Likewise, suppose v ∈ Uk−1 and then uk−1vj v ∈
E(G

|m|
4 ), where G

|m|
4 is a G1,m subgraph of H induced by Uk−1. Then, clearly, at least

one of uk−1vj and v is adjacent to a saturated vertex in Vst(G
|m|
1 ). Also, suppose that

v ∈ Uk−2, since |Vsb(G|m|1 )| = |Vst(G|m|1 )|, then |Vst(G|m|1 )| = |Vst(G|m|1 + uk−1uj)|.
Hence v ∈ FSV in G

|m|
1 . Therefore, |VstH| ≤ |VstG|m|1 |+ |VstG

|m|
2 | ≤ km−4

2 , which is

a contradiction since |Vst(H)| = km
2 , by [9].

Remark 3.18. The implication of Lemma 3.17 is that for a grid H ′ ⊂ H, which is
induced by {U1, U2, · · · , Uk−2} ⊂ V (H), k − 2 ≡ 2 mod 4, suppose Uk contains the
least possible number of saturated vertices, m−1

2 , then ukv2, ukv4, · · · , ukvm−1 are
saturated as shown in the example in Figure 3, for which k = 4 and m = 7.

Figure 3: A G4,7 Grid with Max(G) = 7

Lemma 3.19. Let G be a G3,m with an induced matching M and G|(9)|, induced
by {Vi, Vi+2, · · · , Vi+8} be a G3,9 subgrid of G. Suppose that M ′ ⊂ M is an induced
matching of G|(9)| such that u(1,2)vi, u(1,2)vi+8 ∈M ′. No other edge u(1,2)vi+t, 1 < t <

i+7 is contained in M ′. Then for G
′|(9)| ⊂ G|(9)|, defined as G|(9)|\U1, |Vsb(G

′|(9)|)| ≤
8.

Proof. Let G|(7)| = G|(9)|\ {{u1vi+1, uivi+2, · · · , u1vi+7} , Vi, Vi+8}. It can be seen
that G|(7)| is a G2,7 subgrid of G|(9)|. Clearly also, G|(7)| ⊂ G

′|(9)|. Since
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u(1,2)vi, u(1,2)vi+8 ∈ M ′, then, u2vi+1 and u2vi+7 can not be saturated. Let Gy
be subgraph of G|(7)|, defined as G|(7)|\ {u2vi+1, u2vi+7}. Now, |V (Gy)| = 12 and

|Vsb(Gy)| can be seen to be at most 6. Thus |Vsb(G
′|(9)|)| = |Vsb(Gy)|+ 2 = 8, since

u2vi and u2vi+8 are saturated in M ′.

Remark 3.20. For U1 ⊂ G|(9)| as defined in Lemma 3.19, U1 contains at least 6
saturated vertices, implying that M ′ contains two edges whose four vertices are from
U1.

Corollary 3.21. Let G be a G3,m grid with m ≥ 11 and m ≡ 3 mod 4. If M ′ is a
maximum induced matching of G. Then M ′ contains at least 2k′ edges from U1, where
m = 8k′ + 3 or m = 8k′ + 7.

Figure 4: A G ≡ G3,23 Grid with Max(G) = 17

Figure 5: A G ≡ G3,19 Grid with Max(G) = 14

Theorem 3.22. Let G be a Gn,m grid, with m ≥ 23. Then for n ≡ 1 mod 4,
Max(G) ≤

⌊
2mn−m−3

8

⌋
.

Proof. For n ≡ 1 mod 4, n − 5 ≡ 0 mod 4. Let G1 and G2 be partitions of G
induced by {U1, U2, · · · , Un−5} and {Un−4, Un−3, Un−2, Un−1, Un} respectively. Also,
let M ′,M ′′ be maximum induced matching of G1 and G2 respectively.

Suppose, Un−5 contains at least m−1
2 saturated vertices, the least Un−5 can contain

for M ′ to remain maximum induced matching of G1. By Theorem 3.12, U1 ⊂ G2 (the
Un−4 of G) contains at least 2k + 2 saturated vertices with k = m−3

4 . Following the
proof of Theorem 3.12, it is shown that M ′′ contains m−3

4 edges of U1 ⊂ G2 and either
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of u(1,2)v4 and u(1,2)vm−3. Now, with G = G′ ∪G′′ and hence, |M | ≤ |M ′|+ |M ′′|, it
is obvious therefore, that for each edge uαuβ ∈ Un−4 contained in M ′′, either uα or uβ
is adjacent to a saturated vertex on Un−5 and also, un−4v4 (or un−4vm−3) is adjacent
to saturated un−5v4 (or to saturated un−4vm−3). Hence, |Vst(G)| ≤ 2mn−m−7

4 and
thus, Max(G) ≤

⌊
2mn−m−7

8

⌋
.

Theorem 3.23. Let G be a Gn,m grid with n ≡ 3 mod 4 and m ≡ 3 mod 4, m ≥ 11.
Then Max(G) ≤

⌊
2mn−m+1

8

⌋
and Max(G) ≤

⌊
2mn−m+5

8

⌋
for m = 8k′ + 3 and

m = 8k′ + 7 respectively.

Proof. The proof follows similar techniques as in Theorem 3.22.
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