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1. Introduction

Normed quasilinear spaces are introduced by Aseev, [2], in an effort to generalize
normed linear spaces. A partial order relation was used to define normed quasilinear
spaces. Motivated by [2], and using the framework and the tools given in [2], we
developed the analysis in these spaces in [5, 6, 7, 8, 9, 12].

In this paper, we introduce the concept of seminormed quasilinear spaces and
mention its some basic properties. Also we state and prove a version of Hahn-Banach
theorem, one of the fundamental tools for the application of functional analysis, for
seminormed quasilinear spaces.
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2. Preliminaries and some results on quasilinear

spaces and normed quasilinear spaces

In this section, we present some basic definitions and results that appeared in
[2] and [12] and which will be using in the sequel. Let us begin with Aseev’s main
definition.

Definition 2.1. [2] A set X is called quasilinear space (qls, for short), if a partial
order relation “�”, an algebraic sum operation and an operation of multiplication by
real numbers are defined in it in such a way that the following conditions hold for any
elements x, y, z, v ∈ X and any α, β ∈ R:

x � x, (2.1)

x � z if x � y and y � z, (2.2)

x = y if x � y and y � x, (2.3)

x+ y = y + x, (2.4)

x+ (y + z) = (x+ y) + z, (2.5)

there exists an element θ ∈ X such that x+ θ = x, (2.6)

α · (β · x) = (αβ) · x, (2.7)

α · (x+ y) = α · x+ α · y, (2.8)

1 · x = x, (2.9)

0 · x = θ, (2.10)

(α+ β) · x � α · x+ β · x, (2.11)

x+ z � y + v if x � y and z � v, (2.12)

α · x � α · y if x � y. (2.13)

Generally, a qls X with the partial order relation “�” is denoted by (X,�). Here, we
prefer denote the zero vector of X by θ for clarity.

Every linear space is a qls with the partial order relation “=”.
The most favorite example of qls which is not a linear space is the set of all

nonempty, compact and convex subsets of real numbers with the inclusion relation
“⊆”, the algebraic sum operation

A+B = {a+ b : a ∈ A, b ∈ B}

and multiplication operation by a real number λ defined by

λ ·A = {λa : a ∈ A} .
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We denote this set by ΩC (R).
Another one is Ω (R) which is the set of all nonempty compact subsets of real

numbers.
In general, Ω (E) and ΩC (E) stand for the space of all nonempty closed bounded

and nonempty convex and closed bounded subsets of any normed linear space E, re-
spectively. Both are nonlinear qls with the inclusion relation and a slight modification
of addition operation by

A+B = {a+ b : a ∈ A, b ∈ B}

and multiplication operation by a λ ∈ R defined by λ ·A = {λa : a ∈ A} . Where the
closure is taken with respect to the standard topology in R.

Lemma 2.1. [2] In a qls (X,�), the element θ is minimal, i.e., x = θ if x � θ.

Let X be a qls and Y ⊆ X. Then Y is called a subspace of X if Y is a qls with
the same partial order relation and the restriction of the operations on X to Y .

Theorem 2.1. [12] Y is a subspace of qls X if and only if α · x+ β · y ∈ Y for every
x, y ∈ Y and α, β ∈ R.

An element x′ ∈ X is called inverse of x ∈ X if x+ x′ = θ. Further, if an inverse
element exists, then it is unique. An element x possessing inverse is called regular,
otherwise is called singular. Xr and Xs stand for the sets of all regular and singular
elements in X, respectively, [12].

It will be assumed throughout the text that −x = (−1) · x.
Suppose that every element x in a qls X has inverse element x′ ∈ X . Then the

partial order in X is determined by equality, the distributivity condition in (2.11)
holds and consequently, X is a linear space, [2]. In a real linear space, “=” is only
way to define a partial order such that the conditions (2.1)-(2.13) hold.

On the other hand, an element x ∈ X is said to be symmetric if −x = x, and Xd

denotes the set of all symmetric elements.
Xr, Xd and Xs∪{θ} are subspaces of X and called regular, symmetric and singular

subspaces of X, respectively, [12].

Definition 2.2. [2] Let (X,�) be a qls. A real function ‖.‖X : X −→ R is called a
norm if the following conditions hold:

‖x‖X > 0 if x 6= θ, (2.14)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (2.15)

‖α · x‖X = |α| ‖x‖X , (2.16)

if x � y, then ‖x‖X ≤ ‖y‖X , (2.17)

if for any ε > 0 there exists an element xε ∈ X such that (2.18)

x � y + xε and ‖xε‖X ≤ ε then x � y.

A qls X ,with a norm defined on it, is called normed quasilinear space (normed qls,
for short).



82 S. Çakan and Y. Yılmaz

Let (X,�) be a normed qls. Hausdorff metric or norm metric on X is defined by
the equality

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2 and ‖ari ‖ ≤ r, i = 1, 2} .

Since x � y+ (x− y) and y � x+ (y− x) for any elements x, y ∈ X, the quantity
hX(x, y) is well defined. Also, it is not hard to see that the function hX satisfies all of
the metric axioms and we should note that hX(x, y) may not equal to ‖x− y‖X if X is
a nonlinear qls; however hX(x, y) ≤ ‖x− y‖X is always true for any elements x, y ∈ X.
Therefore, we use the metric instead of the norm to discuss topological properties in
normed quasilinear spaces. For example, xn → x if and only if hX(xn, x)→ 0 for the
sequence (xn) in a normed qls. Although, always ‖xn − x‖X → 0 implies xn → x in
normed quasilinear spaces, xn → x may not imply ‖xn − x‖X → 0.

Let E be a real normed linear space. Then Ω(E) and ΩC(E) are normed quasi-
linear spaces with the norm defined by

‖A‖Ω = sup
a∈A
‖a‖E . (2.19)

In this case, the Hausdorff metric is defined as usual:

hΩ(A,B) = inf{r ≥ 0 : A ⊆ B + S(θ, r), B ⊆ A+ S(θ, r)},

where S(θ, r) is the closed ball of radius r about θ ∈ X, [2].

Lemma 2.2. [2] The operations of algebraic sum and multiplication by real num-
bers are continuous with respect to the Hausdorff metric. The norm is a continuous
function with respect to the Hausdorff metric.

Lemma 2.3. [2] Let X be a normed qls and n be a positive integer.

a) Suppose that xn → x0, yn → y0 and xn � yn for any n. Then x0 � y0.

b) Let xn → x0 and zn → x0. If xn � yn � zn for any n, then yn → x0.

c) If xn + yn → x0 and yn → θ, then xn → x0.

Definition 2.3. [2] Let (X,�) and (Y,4) be quasilinear spaces. A mapping T : X →
Y is called a quasilinear operator if it satisfies the following three conditions:

T (α · x) = α · T (x) for any α ∈ R, (2.20)

T (x1 + x2) 4 T (x1) + T (x2) , (2.21)

if x1 � x2, then T (x1) 4 T (x2) . (2.22)

If X and Y are linear spaces, then the definition of a quasilinear operator coincides
with the usual definiton of linear operator. In this case, condition (2.22) is automat-
ically satisfied.
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Definition 2.4. [2] Let X and Y be normed linear spaces. Any mapping from X to
Ω(Y ) is called a multivalued mapping.

A quasilinear operator T : X → Ω(Y ) is called a multivalued quasilinear mapping.
In this case, conditions (2.20) and (2.21) take the form

T (α · x) = α · T (x) for any α ∈ R,

T (x1 + x2) ⊂ T (x1) + T (x2) .

Also, condition (2.22) is automatically satisfied.
On the other hand, any quasilinear operator from X to Ω(R) is called a quasilinear

functional.

3. Seminormed quasilinear spaces

In this section, we propose a generalization of normed quasilinear spaces. Let us
start the following definition.

Definition 3.1. Let (X,�) be a qls. A real function p : X → R is called a seminorm
if the following conditions hold:

p(x) ≥ 0 if x 6= θ, (3.1)

p(x+ y) ≤ p(x) + p(y), (3.2)

p(α · x) = |α| p(x), (3.3)

p(x) ≤ p(y) if x � y. (3.4)

A qls X with a seminorm defined on it, is called seminormed quasilinear space (briefly,
seminormed qls).

A seminorm p is called total seminorm (or norm) if the condition

“if for any ε > 0 there exists an element xε ∈ X such that

x � y + xε and p(xε) ≤ ε then x � y” (3.5)

holds.

Note that this definition is inspired from the definition of norm presented by Aseev
in [2] and every seminormed (normed) qls is a semimetric (metric) qls.

Proposition 3.1. Let (X, p) be a seminormed qls. Then the equality

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2, p(a
r
i ) ≤ r, i = 1, 2} (3.6)

defines a semimetric on X. If p is total, hX becomes a metric.
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Proof. First of all, we should note that the quantity hX is well defined since x �
y + (x− y) and y � x+ (y − x) for any elements x, y ∈ X.

Assume that x = y. Then x � y and y � x. According to this,

x � y + ar1 and y � x+ ar2

for ar1 = ar2 = θ. That implies hX(x, y) = 0 since p(ar1) = p(ar2) = 0.
Clearly hX is symmetric. Further, remembering that

hX(x, z) = inf
{
r ≥ 0 : x � z + ar1, z � x+ ar2 and p(ari ) ≤

r

2
, i = 1, 2

}
and

hX(z, y) = inf
{
r ≥ 0 : y � z + br1, z � y + br2 and p(bri ) ≤

r

2
, i = 1, 2

}
,

we write x � y + ar1 + br2 for every elements ar1 and br2 such that x � z + ar1 and
z � y + br2.

Similarly, we can say y � x + ar2 + br1 for every elements ar2 and br1 such that
y � z + br1 and z � x+ ar2. Since

p(ar1 + br2) ≤ p(ar1) + p(br2) ≤ r

2
+
r

2
= r

and
p(ar2 + br1) ≤ p(ar2) + p(br1) ≤ r

2
+
r

2
= r,

we get hX(x, y) ≤ hX(x, z) + hX(z, y). Because

hX(x, y) = inf {r ≥ 0 : x � y + ar1 + br2, y � x+ ar2 + br1,

p(ar1 + br2) ≤ r and p(ar2 + br1) ≤ r}

≤ inf
{
r ≥ 0 : x � z + ar1, z � x+ ar2, p(a

r
i ) ≤

r

2
, i = 1, 2

}
+ inf

{
r ≥ 0 : y � z + br1, z � y + br2, p(b

r
i ) ≤

r

2
, i = 1, 2

}
= hX(x, z) + hX(z, y).

Hence the equality (3.6) defines a semimetric.
Now let us show that hX becomes a metric whenever that the seminorm p is total:
Let p be total and hX(x, y) = 0. Then for any ε > 0 there exist elements xε1, x

ε
2 ∈ X

such that x � y+ xε1, y � x+ xε2 and p(xεi) ≤ ε, i = 1, 2. Hence the totality condition
implies that x � y and y � x, that is x = y.

The function hX defined with the equality in (3.6) is called semimetric (metric)
derived from the seminorm (total seminorm) p.

Let hX be semimetric (metric) derived from the seminorm (total seminorm) p.
Then the inequality hX(x, y) ≤ p(x− y) holds for every x, y ∈ X.
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Proposition 3.2. Let (X, p) be a seminormed qls and hX be semimetric (metric)
derived from the seminorm (total seminorm) p. Then we have

i) hX (x+ y, z + v) ≤ hX (x, z) + hX (y, v) ,

ii) hX (α · x, α · y) = |α|hX (x, y) ,

iii) p(x) = hX (x, θ)

for each α ∈ R and every x, y, z, v ∈ X.

Proof. Let us show that the inequality i) holds. Taking into account the definition
of hX and inf A+ inf B ≥ inf A+B, and using (2.12), we write

hX (x, z) + hX (y, v)

= inf {r ≥ 0 : x � z + ar1, z � x+ ar2, p(a
r
i ) ≤ r/2, i = 1, 2}

+ inf {r ≥ 0 : y � v + br1, v � y + br2, p(b
r
i ) ≤ r/2, i = 1, 2}

≥ inf

{
r ≥ 0 : x � z + ar1, y � v + br1, z � x+ ar2, v � y + br2,

p(ari ) ≤ r/2, p(bri ) ≤ r/2, i = 1, 2

}

= inf

{
r ≥ 0 : x+ y � z + v + ar1 + br1, z + v � x+ y + ar2 + br2,

p(ari + bri ) ≤ r, i = 1, 2

}
= hX (x+ y, z + v) .

The equalities ii) and iii) can be also easily obtained.

Proposition 3.3. Let (X, p) be a seminormed qls, x, y ∈ X and hX be semimetric
(metric) derived from the seminorm (total seminorm) p. Then

hX(x, θ) ≤ hX(y, θ) if x � y. (3.7)

Further, quasilinear space operations are continuous with respect to the topology in-
duced by hX .

Proof. Primarily, we say that x � y implies p(x) ≤ p(y) since p is seminorm. Con-
sidering

p(x) = hX(x, θ) and p(y) = hX(y, θ),

it is obtained hX(x, θ) ≤ hX(y, θ) whenever x � y.
Since the topology derived from the semimetric hX is first countable topology,

to say that addition and scalar multiplication operations are continuous, it will be
sufficient to show that these operations are sequentially continuous.

For continuity of addition, let (xn) and (yn) be two sequences in X such that
xn → x and yn → y. Then for every ε > 0 there exists N∈N such that

xn � x+ aε1,n, x � xn + aε2,n and p
(
aεi,n

)
≤ ε

2
, i = 1, 2
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and
yn � y + bε1,n, y � yn + bε2,n and p

(
bεi,n
)
≤ ε

2
, i = 1, 2

whenever n ≥ N. Taking into account that p is seminorm and using (2.12), we can
write

xn + yn � x+ y + aε1,n + bε1,n,

x+ y � xn + yn + aε2,n + bε2,n

and

p
(
aε1,n + bε1,n

)
≤ p

(
aε1,n

)
+ p

(
bε1,n

)
≤ ε

2
+
ε

2
= ε

p
(
aε2,n + bε2,n

)
≤ p

(
aε2,n

)
+ p

(
bε2,n

)
≤ ε

2
+
ε

2
= ε.

These imply that xn + yn → x+ y.
Hence, it remains to show that multiplication operation is continuous. Let (xn)

be a sequence in X such that xn → x. Then for every ε > 0 there exists N∈N such
that

xn � x+ aε1,n, x � xn + aε2,n and p
(
aεi,n

)
≤ ε

|λ|
, λ ∈ R+, i = 1, 2

whenever n ≥ N. Using (2.8), (2.12), (2.13) and the fact that p is seminorm, we can
say

λ · xn � λ · x+ λ · aε1,n,

λ · x � λ · xn + λ · aε2,n

and
p
(
λ · aεi,n

)
≤ |λ| p

(
aεi,n

)
≤ ε, i = 1, 2.

This implies that λ · xn → λ · x.

Also, we note that the semimetric (metric) hX induced by a seminorm (total
seminorm) on the qls X is not translation invariant. But this semimetric (metric)
satisfies the inequality

hX(x+ a, y + a) ≤ hX(x, y), a ∈ X.

Indeed,
hX(x+ a, y + a) ≤ hX(x, y) + hX(a, a) = hX(x, y).

Now let us present an example of seminorm function which is not a norm.

Example 3.1. Consider the qls ΩC(R2) and the function

p(A) = sup{|x2| : (x1, x2) ∈ A}

for any A ∈ ΩC(R2).
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It is easy to see that p holds seminorm axioms. On the other hand, p is not a
norm since p(A) = 0, for element A = {(t, 0) : −1 ≤ t ≤ 1} ∈ ΩC(R2) 6= θ. Also the
condition (2.18) is also not satisfied:

Let A = {(t, 0) : 0 ≤ t ≤ 2}, B = {(t, 0) : 0 ≤ t ≤ 1} and ε > 0 be arbitrary. Let
us define as

Aε = {(t+ ε, 0) : 0 ≤ t ≤ 1} .
Then p(Aε) = 0 and A ⊂ B +Aε, but A  B.

Example 3.2. The function q(A) = p(A)
1+p(A) formed by aid of the seminorm p in

Example 3.1 is not a seminorm on ΩC(R2), since

q(λ ·A) =
p(λ ·A)

1 + p(λ ·A)
=

|λ| p(A)

1 + |λ| p(A)
6= λq(A).

In the following, we give an example of a semimetric map that is not a metric.

Example 3.3. Let A,B ∈ ΩC(R2) and

d(A,B) = sup
{√
|a1 − b1| : (a1, a2) ∈ A, (b1, b2) ∈ B

}
. (3.8)

Firstly let us show that this formula defines a function from ΩC(R2) to R:
Consider the projection

p1 : R2 → R, p1(a1, a2) = a1

and remember that p1 is continuous. p1(A) and p1(B) are compact subsets of R since
A and B are compact in R2. Hence there exist the numbers M1,M2 ≥ 0 such that
|x| ≤M1 for every x ∈ p1(A) and |x| ≤M2 for every x ∈ p1(B). Therefore, since

sup
{√
|a1 − b1| : (a1, a2) ∈ A, (b1, b2) ∈ B

}
= sup

{√
|a1 − b1| : a1 ∈ p1(A), b1 ∈ p1(B)

}
and |x| ≤

√
M1 +M2 for x ∈

{√
|a1 − b1| : a1 ∈ p1(A), b1 ∈ p1(B)

}
, the function d

is well defined.
It is easy to verify that d is a semimetric. But d is not a metric on ΩC(R2). Indeed,

for elements A = {(2, 3)} and B = {(2, 4)} in ΩC(R2), d(A,B) = 0, but A 6= B.
On the other hand, we can show that the semimetric d defined with (3.8) holds

the condition (3.7) and the algebraic operations on ΩC(R2) are continuous according
to this semimetric.

For continuity of addition, let (An) and (Bn) be sequences in ΩC(R2) such that
An → A, Bn → B and we take any xn ∈ An + Bn. Then there exist an ∈ An and
bn ∈ Bn such that xn = an+bn.We can write as an = (a1,n, a2,n) and bn = (b1,n, b2,n)
since An, Bn ∈ ΩC(R2). Because of An → A, Bn → B, we have

d(An, A) = sup

{√
|a1,n − a1| : (a1,n, a2,n) ∈ An, (a1, a2) ∈ A

}
→ 0
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and

d(Bn, B) = sup

{√
|b1,n − b1| : (b1,n, b2,n) ∈ Bn, (b1, b2) ∈ B

}
→ 0,

whenever n→∞. Hence, we obtain that

d(An +Bn, A+B)

= sup

{√
|a1,n + b1,n − (a1 + b1)| : (a1,n + b1,n, a2,n + b2,n) ∈ An +Bn,

(a1 + b1, a2 + b2) ∈ A+B}

≤ sup

{√
|a1,n − a1| : (a1,n, a2,n) ∈ An, (a1, a2) ∈ A

}
+ sup

{√
|b1,n − b1| : (b1,n, b2,n) ∈ Bn, (b1, b2) ∈ B

}
→ 0 + 0 = 0 (n→∞).

This shows that the addition operation is continuous. Similarly it can be seen
that the real-scalar multiplication operation is continuous.

Lastly it remains to show that the condition (3.7) is satisfied. Assume that A ⊆ B.
Then

d(A, θ) = sup
{√
|a1| : (a1, a2) ∈ A

}
≤ sup

{√
|a1| : (a1, a2) ∈ B

}
= d(B, θ).

Remark 3.1. Every semimetric on a qls may not be obtained from a seminorm. In
Example 3.3, if the semimetric defined on ΩC(R2) is obtained from a seminorm, the
property ii) in Proposition 3.2 should hold. However, we see that

d (λ ·A, λ ·B) = sup
{√
|λ · a1 − λ · b1| : (λ · a1, λ · a2) ∈ λ ·A, (λ · b1, λ · b2) ∈ λ ·B

}
=
√
|λ| sup

{√
|a1 − b1| : (a1, a2) ∈ A, (b1, b2) ∈ B

}
=
√
|λ|d (A,B) .

The following proposition is a comment of the condition (2.18).

Proposition 3.4. Let X be a normed qls, Nθ is the family of all neighbourhoods of
θ and x, y ∈ X. If for any V ∈ Nθ there exists some b ∈ V such that x � y + b, then
x � y.

Remark 3.2. In Proposition 3.4, the hypothesis “Let X be a normed qls” is indis-
pensable. Indeed, Let us recall from Example 3.1 that the function

p(A) = sup {|x2| : (x1, x2) ∈ A} , A ∈ ΩC(R2)
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is seminorm on ΩC(R2). We can construct a topology τ on ΩC(R2) by aid of p in
such a way that

U ∈ τ ⇔ {A : p(A) < ε} ⊆ U, for some ε > 0.

We note that τ is a semimetrizable topology with the semimetric

d(A,B) = inf{r ≥ 0 : A ⊆ B + Cr1 , B ⊆ A+ Cr2 , p(C
r
i ) ≤ r, i = 1, 2}.

Now, let A = {(t, 0) ∈ R2 : 0 ≤ t ≤ 2}, B = {(t, 0) ∈ R2 : 0 ≤ t ≤ 1}, ε > 0 be
arbitrary and

Bε = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 < ε}.

Then there exists Bε ∈ V for every V ∈ Nθ such that A ⊂ B +Bε. However A * B.

Remark 3.3. In Lemma 2.3, the hypothesis “Let X be a normed qls” can not be
relaxed. Indeed, let us recall that every linear space is a qls with the partial order
relation “=” and consider the element x = (x1, x2) and the seminorm

p(x) = p ((x1, x2)) =
{
|x1| : (x1, x2) ∈ R2

}
on the qls (R2,=).

Let (xn) =
((

1
n , 0
))∞
n=1

and (yn) =
((

1
n , 0
))∞
n=1

.

We see that xn = yn for every n. On the other hand, the sequence
((

1
n , 0
))∞
n=1

converges to different two elements of R2 according to this seminorm. For example,

(xn) =

((
1

n
, 0

))∞

n=1

→ (0, 1) = x

and

(yn) =

((
1

n
, 0

))∞

n=1

→ (0, 2) = y

since

p

((
1

n
, 0

)
− (0, 1)

)
= p

((
1

n
,−1

))
=

∣∣∣∣ 1n
∣∣∣∣→ 0

and

p

((
1

n
, 0

)
− (0, 2)

)
= p

((
1

n
,−2

))
=

∣∣∣∣ 1n
∣∣∣∣→ 0

while n→∞. However x 6= y.

Now, let us denote by ΩnC(R) the family of all n−tuples intervals which constitute
an important part of interval analysis.

ΩnC(R) = {X = (X1, X2, ..., Xn) : Xi ∈ ΩC(R) for 1 ≤ i ≤ n} .

We emphasize that ΩnC(R) is different from ΩC(Rn) which is the family of all nonempty
closed, bounded and convex subsets of Rn.
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ΩnC(R) is a qls with the operations “⊕”, “�” and partial order relation “�” defined
by

⊕ : ΩnC(R)× ΩnC(R)→ ΩnC(R),

X ⊕ Y = (X1 + Y1, X2 + Y2, ..., Xn + Yn)

and

� : R× ΩnC(R)→ ΩnC(R),

α�X = (α ·X1, α ·X2, ..., α ·Xn)

and
X � Y ⇔ Xi ⊆ Yi for every i ∈ {1, 2, ..., n}

for X = (X1, X2, ..., Xn) , Y = (Y1, Y2, ..., Yn) ∈ ΩnC(R) and α ∈ R.
ΩnC(R) is a seminormed qls with equality defined by

‖X‖Ωn
C(R) = ‖Xi‖ΩC(R)

for fixed i ∈ {1, 2, ..., n} .
For example, on seminormed qls Ω3

C(R), the equality

‖X‖Ω3
C(R) = ‖X1‖ΩC(R)

defines a seminorm. It is not hard to see that seminorm axioms are hold. The function
defined by this way is not a norm since ‖X‖ = 0 for element

X = {[0, 0] , [1, 3] , [−3,−2]} ∈ Ω3
C(R) 6= θ.

Example 3.4. Also the condition (2.18) is also not satisfied:
Let X = {[1, 2] , [3, 5] , [−4,−3]}, Y = {[1, 2] , [4, 6] , [3, 5]} and ε > 0 be arbitrary.

Let us define as
Xε = {[0, 0] , [−2, 1] , [−8,−7]} .

Then ‖Xε‖ = 0 and X � Y +Xε, but X � Y .

We note that T will be called as a linear operator between quasilinear spaces, if
T satisfies the following conditions:

T (α · x) = α · T (x) for any α ∈ R, (3.9)

T (x1 + x2) = T (x1) + T (x2) . (3.10)

Also, any linear operator from the quasilinear space X to R is called a linear functional
on quasilinear space X.

The Hahn-Banach theorem is an important tool in functional analysis and there
are several versions of it. Let us note that we are largely inspired by Theorem 2.2 in [4],
in stating the Hahn-Banach theorem for seminormed quasilinear spaces. The impact
of the Hahn-Banach theorem is the existence of linear functionals having specified
properties on a quasilinear space. The following is the main result of our work.
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Theorem 3.1. Let p be a seminorm on the quasilinear space X and Y be a subspace
of X. Suppose that f is a linear functional from Y to R and f (y) ≤ p (y) for all y ∈ Y.
Suppose also that ϕ is a quasilinear functional from X to ΩC(R) and f (x) ∈ ϕ (x)
for every x ∈ Y. Then there exists a linear functional g from X to R such that
g (x) = f (x) for any x ∈ Y and g (x) ∈ ϕ (x) for any x ∈ X.

Proof. Let Z be a subspace of X containing Y , g be a linear functional on Z that
extends f, and g (z) ≤ p (z) for all z ∈ Z. Also, let Z be the set of all pairs (Z, g) .
First of all, since the pair (Y, f) is obviously an element of Z, the set Z is not empty.

Define a partial order relation “�” on Z as follows:

(Z1, g1)� (Z2, g2)⇔
{

Z1 ⊂ Z2

g2 (z) = g1 (z) , for all z ∈ Z1
.

Using Zorn Lemma, Z posesses a maximal totally ordered subset {(Zα, gα)} . If it is

defined as Z =
⋃
Zα, clearly, Z is a subspace of X. Also, if z ∈ Z, then z ∈ Zα for

some α.
If z ∈ Zα and z ∈ Zβ , then, without loss of generality, we may assume that

(Zα, gα) � (Zβ , gβ) . Therefore gα (z) = gβ (z) , so that we may uniquely define
g (z) = gα (z) whenever z ∈ Zα.

Now, let us show that the function g defined by this way is a linear functional on
Z. To do this, let z1 and z2 be elements of Z. Then z1 ∈ Zα and z2 ∈ Zβ for some α
and β. Since the set {(Zγ , gγ)} is totally ordered, we may assume, again without loss
of generality, that Zα ⊂ Zβ , hence both z1 and z2 are in Zβ . So

g(λ1 ·z1 +λ2 ·z2) = gβ (λ1 · z1 + λ2 · z2) = λ1gβ (z1)+λ2gβ (z2) = λ1g (z1)+λ2g (z2) .

We note that if y ∈ Y , then g(y) = f(y), so that g is an extension of f. So, g is a linear
functional on the subspace Z, that extends f , for which g (z) ≤ p (z) and g (z) ∈ ϕ (z)
for all z ∈ Z, so that the proof will be complete if we show that Z = X.

Assume that Z 6= X, and v be an element in X which is not in Z. Also, Z ′ denotes
the set of all elements in the form z + λ · v for λ ∈ R and z ∈ Z.

On the other hand, since

θ = (1− 1) · v � v − v

and
z + z′ � z + z′ for any z, z′ ∈ Z,

we write z + z′ � z + z′ + v − v from (2.12). Also p (z + z′) ≤ p (z + z′ + v − v) by
the fact that p is a seminorm. Therefore, we observe

g(z) + g(z′) = g(z + z′)

≤ p (z + z′)

≤ p (z + z′ + v − v)

≤ p (z + v) + p (z′ − v)
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or

g(z′)− p (z′ − v) ≤ p (z + v)− g(z)

for any z, z′ ∈ Z.
Consider the sets

W1 = {g(z′)− p (z′ − v) : z′ ∈ Z} ⊂ R,

W2 = {p (z + v)− g(z) : z ∈ Z} ⊂ R

and say

supW1 = w1 and inf W2 = w2.

It is clear that w1 ≤ w2. Take w0 to be any number for which w1 ≤ w0 ≤ w2 and
define g′ on Z ′ by

g′ (z + λ · v) = g(z) + λ · w0.

It is easy to see that g′ is linear and extends f.
If λ > 0, then

g′ (z + λ · v) = λ
(
g
( z
λ

)
+ w0

)
≤ λ

(
g
( z
λ

)
+ w2

)
≤ λ

(
g
( z
λ

)
+ p

( z
λ

+ v
)
− g

( z
λ

))
= λp

( z
λ

+ v
)

= p (z + λ · v) .

On the other hand, if λ < 0, then

g′ (z + λ · v) = |λ|
(
g

(
z

|λ|

)
− w0

)
≤ |λ|

(
g

(
z

|λ|

)
− w1

)
≤ |λ|

(
g

(
z

|λ|

)
− g

(
z

|λ|

)
+ p

(
z

|λ|
− v
))

= |λ| p
(
z

|λ|
− v
)

= p (z + λ · v) .

This proves g′ (z + λ · v) ≤ p (z + λ · v) for all z + λ · v ∈ Z ′. Hence (Z ′, g′) ∈ Z
and (Z, g) � (Z ′, g′) . But then the element (Z ′, g′) ∈ Z will contradicts with the
maximality of (Z, g) by the fact that {(Zα, gα)} is a maximal totally ordered set.
This completes the proof.
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[4] L.W. Baggett, Functional Analysis: a primer, Marcel Dekker, Inc., New York,
USA, 1992.
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[9] S. Çakan, Y. Yılmaz, Lower and upper semi convergence in normed quasilinear
spaces, Nonlinear Funct. Anal. Appl. 21 (3) (2016) 501–511.

[10] V. Lakshmikantham, T.G. Bhaskar, J.V. Devi, Theory of Set Differential Equa-
tions in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006.

[11] R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to Interval Analysis, SIAM,
Philadelphia, USA, 2009.
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