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1 Introduction

The purpose of the paper is to suggest an efficient general method for evaluation of
the influence coefficients of the 3D boundary element method accounting for both
smooth behaviour of the densities at internal parts of the boundary and power-type
asymptotic behaviour near edges of the boundary.

Inspection of the boundary integrals equations of static 3D potential and elasticity
theory [4] shows that it is sufficient to consider the function

∫

Sq

f (y)

R
dSy, (1.1)

and its spatial derivatives ∂/∂xi, ∂
2/∂xi∂xj , ∂

3/∂xi∂xj∂xk.
Herein, Sq is the surface of a boundary element; f(y) is a function to be properly

approximated on the element; R =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, where x1,

x2, x3 and y1, y2, y3 are global coordinates of the field and integration point, respec-
tively.
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2 Approximation of the boundary and density

We shall assume that, as usual (e.g. [1]), a curvilinear, in general, surface element
is transformed into a plane element. The global coordinates are transformed to the
local Cartesian coordinates of the plane element with the local axes y′2, y′3 in the
element plane; the origin O′ is in the plane of the transformed element. Besides, we
assume that the entries of Jacobian matrix, its determinant and the expression for R
are expanded into power series in x′

i − y′i and truncated. From now on, to simplify
notation, we shall drop the prime in the transformed coordinates and refer (1.1) to
a plane element in its local coordinates. Then y1 = 0 and the function f (y) is the
product of the density depending on the local coordinates y2, y3 and powers of y2 and
y3, which result from the truncated expressions mentioned.

Furthermore, we assume the plane element to be a trapezoid. This type of bound-
ary elements includes as particular cases commonly used triangular, parallelogram,
rectangular and square elements. Without loss of generality, we direct the y2-axis
along the trapezoid base, the y3-axis orthogonal to it and we locate the origin in the
lower left apex of the trapezoid (Fig. 1). For an edge element, we choose its edge as
the base of the trapezoid. Then if the density near the edge has the power-type be-
haviour, it is described by the factor yα3 with 0 6 α < 1. The general approximation
of the function f (y) in (1.1) is of the form:

y3

y2

y2 = aby3 + bb y2 = afy3 + bf

h

0

Figure 1: Trapezoidal element in local coordinates, bb = 0

f(y) = yα3

mp∑

k+l=0

ckly
k+s
2 yl+q

3 , 0 6 α < 1, (2.1)

where mp is the degree of a polynomial approximating the density, ckl are coefficients
of approximation, s and q are degrees arising from the coordinate transformation (for
initially plane parts of the boundary s = q = 0).

The two most important cases are: (i) α = 0 what corresponds to smooth be-
haviour of the density, and (ii) α = 1/2 what corresponds to square-root asymptotics
typical for problem of linear fracture mechanics. Still, other exponents α may arise
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in approximations. For instance, α = 2/3 for fracturing impermeable rock by a New-
tonian fluid. Therefore, it is reasonable to specify a particular value of α at the end
of the discussion.

Using (2.1) in (1.1) with Sq being the plane trapezoid of the height h (Fig. 1)
implies that it is sufficient to consider the main integrals of the form:

Akl
α (x1, x2, x3) =

h∫

0


yl+α

3

y2=afy3+bf∫

y2=aby3+bb

(x2 − y2)
k

R
dy2


 dy3. (2.2)

and their partial derivatives ∂/∂xi, ∂
2/∂xi∂xj , ∂

3/∂xi∂xj∂xk.

3 Evaluation of the main integrals

The integrals (2.2) are evaluated recurrently by using starting integrals for k = 0 and
k = 1:

A0j
α (x1, x2, x3) = −

h∫

0

[
yj+α
3 ln[(x2 − bξ − aξy3) +Rξ]

]ξ=f

ξ=b

dy3, (3.1)

A1j
α (x1, x2, x3) = −

h∫

0

[
yj+α
3 Rξ

]ξ=f

ξ=b

dy3, (3.2)

where where Rξ =
√
x2
1 + (x2 − bξ − aξy3)2 + (x3 − y3)2; the symbol

[ ]x=b

x=a
means

the double substitution:
[
f(x)

]x=b

x=a
= f(b)− f(a).

For k > 2, the recurrent equations are:

Akl
α = − 1

k

( h∫

0

yα+l
3

[
(x2 − bξ − aξy3)

k−1Rξ

]ξ=f

ξ=b

dy3+

+(k − 1)
(
x2
1 + x2

3

)
A(k−2)l

α − 2x3(k − 1)A(k−2)(l+1)
α + (k − 1)A(k−2)(l+2)

α

)
. (3.3)

Note that the integral A1j
α in (3.2) is a particular case of the integrals on the r.h.s.

of (3.3) when k = 1. Therefore, it remains to consider the integral on the r.h.s. of
the (3.3) and the integral A0j

α defined by (3.1). For both of them, an analysis shows
that they are promptly expressed as linear combinations of three standard terms:

[[
yl+1+α
3 ln[(x2 − bξ − aξy3) +Rξ]

]ξ=f

ξ=b

]y3=h

y3=0

, (3.4)


uξ

s

h∫

0

yα3 y
s
3

Rξ

dy3



ξ=f

ξ=b

, (3.5)
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h∫

0

yα3

(
Ãy3 + B̃

)

R2
0Rξ

dy3




ξ=f

ξ=b

, (3.6)

where uξ
s, Ã and B̃ are known coefficients depending on ξ, R2

0 = x2
1 + (x3 − y3)

2.
From (3.4)–(3.6) it follows that the problem is reduced to calculation of the in-

tegrals (3.5), (3.6) and their partial derivatives of the first, second and third order.
Differentiation of (3.4), being trivial, we focus on the derivatives of the integrals (3.5)
and (3.6).

4 Main integrals defining the first, second and third

derivatives of standard terms

Evaluation of the first, second and third derivatives of the standard term (3.5) shows
that it results in two new standard terms:



vξi

h∫

0

yα3

(y3 + zξ)
iRξ

dy3




ξ=f

ξ=b

,



v̄ξi

h∫

0

yα3

(y3 + z̄ξ)
i Rξ

dy3




ξ=f

ξ=b

, (4.1)

where vξi are known, in general complex, coefficients (i = 1, 2, 3); zξ is the complex

root of the polynomial R2
ξ , so that

(
1 + a2ξ

)
(y3 + zξ) (y3 + z̄ξ) = R2

ξ ; the overbar

denotes complex conjugation.
Similar analysis of the partial derivatives of the standard term (3.6) also yields

two new standard terms:


wξ

j

h∫

0

yα3 dy3

(y3 + z0)
j
Rξ



ξ=f

ξ=b

,


w̄ξ

j

h∫

0

yα3 dy3

(y3 + z̄0)
j
Rξ



ξ=f

ξ=b

, (4.2)

where wξ
j are known, in general complex, coefficients; z0 = −x3 + ix1 is the root of

R2
0, j = 1, 2, 3, 4, when x1 6= 0; in the case x1 = 0 we have z0 = z̄0 = −x3 and then

j = 1, 2, . . . , 8. Actually (4.2) are particular cases of (4.1) when the root zξ of R2
ξ is

changed to the root z0 of R2
0.

Noting that the second expression in (4.1) and (4.2) are the conjugated first ones,
we come to the conclusion that the problem is reduced to evaluation of three types
of integrals, at most:



uξ

h∫

0

yα3 y
s
3

Rξ

dy3




ξ=f

ξ=b

,



viξ

h∫

0

yα3

(y3 + zξ)
i
Rξ

dy3




ξ=f

ξ=b

,



wj
ξ

h∫

0

yα3 dy3

(y3 + z0)
j
Rξ




ξ=f

ξ=b

,

(4.3)
where i = 1, 2, 3, j = 1, 2, 3, 4 for x1 6= 0 and j = 1, 2, . . . , 8 for x1 = 0. Emphasise that
when representing the exponent α as a proper rational fracture α = n/m, (n < m),
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the integrals (4.3) may be evaluated recurrently. Below we give the explicit formulae
for the cases most important for application: α = 0 and α = 1/2. Before presenting
them, we distinguish three cases which suggest simplifications.

(i) Differentiation with respect to x2. In this case, we may avoid using the
recursive equation (3.3) by the method suggested in the paper [5]. Specifically, by the
relation ∂Akl/∂x2 = −∂Akl/∂y2 we obtain

∂Akl

∂x2
= −

h∫

0

[
yl+α
3

(x2 − bξ − aξy3)
k

Rξ

]ξ=f

ξ=b

dy3. (4.4)

This shows that differentiation with respect to x2 immediately leads to arithmetic
operations with the expressions (4.1).

(ii) Differentiation with respect to x1. By differentiating equation (3.3) with
respect to x1, we obtain:

∂Akl
α

∂x1
= − 1

k

[ h∫

0

x1y
α+l
3 (x2 − bξ − aξy3)

k−1

Rξ

dy3

]ξ=f

ξ=b

+

−k − 1

k

(
2x1A

(k−2)l
α + (x2

1 + x2
3)
∂A

(k−2)l
α

∂x1
− 2x3

∂A
(k−2)(l+1)
α

∂x1
+

∂A
(k−2)(l+2)
α

∂x1

)
.

(4.5)

The derivative of the starting integral
∂A1l

α

∂x1
has the form of the first integral on the

right hand side of the formula (4.5). Thus it is enough to consider the derivative of
the starting integral A0l

α .

∂A0l
α

∂x1
= x1

h∫

0

[
yl+α
3 (x2 − bξ − aξy3)

R2
0Rξ

]ξ=f

ξ=b

dy3 − x1

h∫

0

[
yl+α
3

R2
0

]ξ=f

ξ=b

dy3. (4.6)

The first integral after decomposition into a sum of real partial fractions is evaluted
by arithmetic operations with the integrals (3.5) and (3.6). The second integral does
not depend on ξ, therefore it is zero. We see that evaluation of partial derivatives,
containing differentiation with respect to x1, is reduced to evaluation of expressions
of the forms (4.1) for i = 1, 2 and (4.2) for j = 1, 2, 3.

(iii) Double differentiation with respect to x3. Since the function 1/R
satisfies the Laplace equation when R 6= 0, we may avoid repeated differentiation
with respect to x3 by using the equation

∂2Akl
α

∂x2
3

= −
(
∂2Akl

α

∂x2
1

+
∂2Akl

α

∂x2
2

)
. (4.7)

Then simplifications of points (i) and (ii) become available.
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5 Case of smooth density (α = 0)

In this case, all the integrals are evaluated analytically. Specifically, the integrals
(3.5), (4.1) and (4.2) become respectively:

Is =

h∫

0

ys3√
(y3 + zξ)(y3 + z̄ξ)

dy3, Js =

h∫

0

1

(y3 + zξ)
s
√
(y3 + zξ)(y3 + z̄ξ)

dy3,

and Ks =

h∫

0

dy3

(y3 + z0)
s
√
(y3 + zξ)(y3 + z̄ξ)

. (5.1)

Each of them is evaluated recurrently, with starting expressions:

I0 = J0 = K0 = 2

[
ln
(√

y3 + zξ +
√
y3 + z̄ξ

)]y3=h

y3=0

,

I1 =

[√
(y3 + zξ)(y3 + z̄ξ)

]y3=h

y3=0

− Re (zξ) I0,

K1 =
2

[
arctan

(√
y3+zξ

√
z̄ξ−z0√

y3+z̄ξ
√

z0−zξ

)

]y3=h

y3=0√
z0−zξ

√
z̄ξ−z0

.

(5.2)

The recursive formulas are:

Is =
1

s

([
ys−1
3

√
(y3 + zξ)(y3 + z̄ξ)

]y3=h

y3=0
− (2s− 1)Re (zξ) Is−1 − (s− 1) |zξ|2 Is−2

)
,

(5.3)

Js =
1(

s− 1
2

)
(zξ − z̄ξ)




[ √

y3 + z̄ξ

(y3 + zξ)
s− 1

2

]y3=h

y3=0

+ (s− 1)Js−1



 , (5.4)

Ks =
1

(s− 1) (zξ − z0) (z̄ξ − z0)

(
−
[√

(y3 + zξ) (y3 + z̄ξ)

(y3 + z0)
s−1

]y3=h

y3=0

+

+

(
s− 3

2

)
(2z0 − zξ − z̄ξ)Ks−1 − (s− 2)Ks−2

)
. (5.5)

Note that in the considered case, the representation of the trapezoid as a sum of
right triangles and a rectangle, allows us to use also the efficient method suggested in
[5].
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6 The case of the density with square-root asymp-

totics near the element edge (α = 1/2)

In this case, the starting integrals for evaluation of the integrals

Is =

h∫

0

ys3qdy3√
y3 (y3 + zξ) (y3 + z̄ξ)

, Js =

h∫

0

dy3

(y3 + zξ)
s
√
y3 (y3 + zξ) (y3 + z̄ξ)

,

Ks =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3 + z0)

s ,

are:

I0 = J0 = K0 =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ)

, (6.1)

I1 =

h∫

0

y3√
y3 (y3 + zξ) (y3 + z̄ξ)

dy3, (6.2)

J1 =

h∫

0

dy3

(y3 + zξ)
√

y3 (y3 + zξ) (y3 + z̄ξ)
, (6.3)

K1 =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3 + z0)

, (6.4)

K2 =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3 + z0)

2 . (6.5)

The recursive formulae are:

Is =
1

(2s− 1)

(
2

[
ys−2
3

√
y3 (y3 + zξ) (y3 + z̄ξ)

]y3=h

y3=0

+

− 4Re (zξ) (s− 1) Is−1 − |zξ|2 (2s− 3) Is−2

)
, (6.6)

Js =
1(

s− 1
2

)
(z̄ξ − zξ) zξ

[[√
(y3 + z̄ξ)y3

(y3 + zξ)s−
1
2

]y3=h

y3=0

+

+(s− 1)(z̄ξ − 2zξ)Js−1 +

(
s− 3

2

)
Js−2

]
, (6.7)
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Ks =
1

2 (s− 1) (z0 − zξ) (z0 − z̄ξ) z0

([
2
√
y3 (y3 + zξ) (y3 + z̄ξ)

(y3 + z0)
s−1

]y3=h

y3=0

+

+(2s− 5)Ks−3 − 2 (s− 2) (3z0 − z̄ξ − zξ)Ks−2

)
+

+
(2s− 3)

2 (s− 1)

(
1

z0
+

1

z0 − zξ
+

1

z0 − z̄ξ

)
Ks−1. (6.8)

Remark 6.1 For z0 = 0 (i.e. x1 = 0, x3 = 0),

Ks =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3)

s ,

and the recursive formula becomes:

Ks = − 1(
s− 1

2

)
|zξ|2

([
y
−(s− 1

2 )
3

√
(y3 + zξ) (y3 + z̄ξ)

]y3=h

y3=0

+

+

(
s− 3

2

)
Ks−2 + 2Re (zξ) (s− 1)Ks−1

)
, (6.9)

with starting integrals:

K−1 = I1, K0 = I0. (6.10)

Evaluation of the starting elliptic integrals I0, I1, J1, K1 and K2 is efficiently
performed by proper adjusting the Carlson algorithms as explained in the next section.

7 Efficient evaluation of standard elliptic integrals
for problems involving cracks (α = 1/2)

The conventional methods of evaluation the elliptic integrals employ Gauss and Lan-
den transformations [6]. They converge quadratically and work well for elliptic inte-
grals of the first and second kind. However, as emphasised in [6] and confirmed by
our experience, they suffer from lost of significant digits for the integrals of the third
kind needed for our purpose. In contrast, the Carlson algorithm provides a unified
method for all the three kinds of integrals with extremely high efficiency. To use this
algorithm, we introduce the new variable t defined by equation:

y3 =
1

t+ 1
h

. (7.1)
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Then the starting integrals become:

I0 =
1

|zξ|

∞∫

0

dt√(
t+ 1

h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

) , (7.2)

I1 =
1

|zξ|

∞∫

0

dt

(
t+ 1

h

) 3
2

√(
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

) , (7.3)

J1 =
1

zξ |zξ|

∞∫

0

(
t+ 1

h

)
dt√(

t+ 1
h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

)(
t+ 1

h
+ 1

zξ

) , (7.4)

K1 =
1

|zξ| z0

∞∫

0

(
t+ 1

h

)
dt√(

t+ 1
h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

)(
t+ 1

h
+ 1

z0

) , (7.5)

K2 =
1

|zξ| z20

∞∫

0

(
t+ 1

h

)2
dt√(

t+ 1
h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

)(
t+ 1

h
+ 1

z0

)2 . (7.6)

They are promptly expressed in terms of Carlson integrals RF , RD and RJ of the
first, second and third kind, respectively, defined as:

RF (x, y, z) = 1
2

∞∫
0

[(t+ x) (t+ y) (t+ z)]
− 1

2 dt,

RD(z, y, z) = RJ (x, y, z, z) = 3
2

∞∫
0

[(t+ x) (t+ y)]−
1
2 (t+ z)−

3
2 dt,

RJ(x, y, z, p) = 3
2

∞∫
0

[(t+ x) (t+ y) (t+ z)]
− 1

2 (t+ p)
−1

dt.

(7.7)

In terms of the Carlson integrals, the starting integrals are:

I0 =
2

|zξ|
RF

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ

)
, (7.8)

I1 =
2

3 |zξ|
RD

(
1

h
+

1

zξ
,
1

h
+

1

z̄ξ
,
1

h

)
, (7.9)

J1 =
I0
zξ

− 2

3z2ξ |zξ|
RD

(
1

h
,
1

h
+

1

z̄ξ
,
1

h
+

1

zξ

)
, (7.10)

K1 =
I0
z0

− 2

3 |zξ| z20
RJ

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ
,
1

h
+

1

z0

)
, (7.11)
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K2 = − I0
2z20

(
1 +

zξ
z0 − zξ

+
z̄ξ

z0 − z̄ξ

)
− I1

2z30
+

+
K1

2z0

(
3 +

zξ
z0 − zξ

+
z̄ξ

z0 − z̄ξ

)
+

1

|zξ| z40

√
h(

1
h
+ 1

z0

) ∣∣∣ 1h + 1
zξ

∣∣∣
+

− 1

3 |zξ| z30

(
zξ

zξ − z0
RD

(
1

h
,
1

h
+

1

z̄ξ
,
1

h
+

1

zξ

)
+

z̄ξ
z̄ξ − z0

RD

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ

))
.

(7.12)
Finally, we need to evaluate five Carlson integrals only:

RD

(
1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ
, 1
h

)
, RD

(
1
h
, 1
h
+ 1

z̄ξ
, 1
h
+ 1

zξ

)
,

RD

(
1
h
, 1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ

)
, RF

(
1
h
, 1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ
,
)
,

RJ

(
1
h
, 1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ
, 1
h
+ 1

z0

)
.

(7.13)

The integrals RD and RF are evaluated very fast and accurately by algorithms pre-
sented by Carlson in the paper [3]. The same also refers to the integrals RJ when
its last argument in not a negative real number. The case, when the last argument(

1
h
+ 1

z0

)
of the integral RJ is a real negative number, is special. It occurs when the

field point is within the strip x1 = 0, 0 < x3 < h. Then the integral RJ is a singular
real Cauchy integral:

RJ

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ
,
1

h
+

1

z0

)
=

∞∫

0

dt√
t+ 1

h

√
f + gt+ t2

(
t+ 1

h
+ 1

z0

) , (7.14)

where f = |zξ|2, g = 2Re zξ. In the paper [2] Carlson provides equations serving for
efficient of this integral:

RJ =
2c11
3c44

[
− 4x3

(
c214 +

√
c211c

2
44

)
RJ(M

2, L2
−, L

2
+,W

2
+)+

−6RF (M
2, L2

−, L
2
+) + 3RC(U

2,W 2)− 2RC(P
2, Q2)

]
, (7.15)

where

c211 = 2
(
f − g

h
+ 1

h2

)
,

c214 = 2
(
f − g

(
1
h
+ 1

2z0

)
+ 1

h

(
1
h
+ 1

z0

))
,

c244 = 2

(
f − g

(
1
h
+ 1

z0

)
+
(

1
h
+ 1

z0

)2)
,

(7.16)
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and
M2 = 2

√
f + g,

U2 = 1
h
,

W 2 = U2 + 1
2z0c

2
11,

W 2
+ = M2 + z0

(
c214 + c11c44

)
,

L2
± = M2 +

(
2
h
− g
)
± c11

√
2,

Q2 = W 2
(
1 + h

z0

)
,

P 2 = Q2 − 1
2z0c

2
44,

RC (a, b) = RF (a, b, b) .

(7.17)

With using these equations, evaluation of the elliptic integrals, needed for problems
involving cracks, becomes extremely efficient. Our experience shows that calculations
of influence coefficients for square-root edge elements (α = 1/2) are performed as
accurate and fast as those for ordinary elements (α = 0).

We believe that similar, highly efficient algorithms may be developed for any
proper fraction α = m/n (m < n).
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