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1. Introduction

There exists a beautiful one-to-one correspondence between the following two no-
tions defined in two distinct ways: (i) a Boolean algebra, introduced in terms of a
partially ordered set (a poset for short) as a 0-1-lattice which is distributive and
complemented; (ii) a Boolean ring with unit, i.e. an algebraic ring with idempotent
multiplication which contains a unit. The correspondence between the Boolean sys-
tems (i) and (ii) can be described by suitable homomorphisms which transmit the
order structure of posets to the algebraic structure of Boolean rings and vice versa, so
one can say about some kind of duality between the two structures (cf. Introduction
in [7]). This fact is well known and presented in numerous papers and monographs
(see e.g. [41], [42], [43], [3], [40], [45], [44], [24], [2], [21]).

A similar duality holds in a more general but still classical situation, when both (i)
and (ii) above are considered without units, roughly speaking. More exactly, in terms
of the notions used in this paper, there is a bijection between (I) B-rings, a kind of
generalized Boolean algebras, lattices in a given poset X, in which supX may not
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exist (see Definition 6), and (II) Boolean rings, i.e. algebraic rings with idempotent
multiplication in which a unit may not exist (see Definition 16).

Various types of further extensions of Boolean algebras and rings were investigated
by many authors (see e.g. [23], [4], [10], [11], [5], [12], [6], [13], [14], [15], [7]). In par-
ticular, very interesting general duality results concerning generalized orthomodular
lattices are given in [10] and [7].

In this paper, we discuss certain aspects of duality between order and algebraic
structures of Boolean systems. To present mutual relations between B-rings and
Boolean rings (Theorems 4 and 6 in section 5) we give a list of properties of the
binary operation (denoted here by −) of difference in B-rings, defined as an extension
of the partial binary operation 	 of proper difference. The latter is introduced under
condition (R) postulated for B-rings in distributive 0-lattice (see Definitions 6 and 7).
Some properties of difference in B-rings collected in section 3 were partly formulated
and proved in our earlier paper [9]. We recall them in Proposition 12 and 14, changing
slightly the notation and completing the omitted proofs.

On the other hand, we present also another approach in which the starting point
is not a 0-lattice (join and meet of any two elements exist), but a special type of
0-join-semilattice (only join of any two elements exists), namely a ∆-join-semilattice
(see Definitions 2 and 13) which satisfy, in addition, conditions (Im) and (∆). The
conditions allow one to define uniquely the binary operation r of difference in ∆-join-
semilattices and guarantee that meets of any two of its elements exist. Moreover, the
distributivity law and condition (R), assumed for B-rings, are satisfied. Consequently,
∆-join-semilattices appear to be an equivalent description of B-rings (see Theorem
3 in section 5). The mutual relations between ∆-join-semilattices and Boolean rings
(Theorems 5 and 7 in section 5) are consequences of Theorems 4 and 6, in view of
Theorem 3.

In our approach to Boolean systems based on the partial order structure a special
role is played by various types of binary operations (partial and full) of difference. In
this context it should be noted that there exist much more general, categorical and
fuzzy (MV -algebras) approaches, in which the notion of D-posets, introduced by F.
Kôpka and F. Chovanec (see [30], [32], [8], [31]) on the base of the partial operation
of difference, plays an important role as a model in quantum probability theory. The
notion was intensively investigated by R. Frič and M. Papčo (see [16]-[20], [33]-[35]).

Our interest in generalizing the notion of Boolean algebras to B-rings or ∆-join-
semilattices is connected with the results of B. J. Pettis (see [36]) who extended to
Boolean σ-rings certain theorems of W. Sierpiński (see [39]) on generated families
of subsets of a given set (see also [28] and [22]). On the other hand, B-rings are
natural objects for generalizing the theory of A. Rényi of conditional probability
spaces (see [37], [38], [25], [26], [27], [1], [29]). We are going to discuss these issues in
our forthcoming publications.

For completeness of the presentation we give full proofs of most of the results
formulated in this paper.
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2. Semilattices and lattices

We start from certain basic definitions and their consequences. In particular, we
recall some of definitions and results from our article [9].

All material in this section is given without proofs, because the properties formu-
lated here either follow immediately from the respective definitions or can be received
in a similar way as in [9].

Let (X,≤) be a poset, i.e. a partially ordered set, and let A be its non-empty
subset. We say that inf A [supA] exists in X if there is an element x ∈ X such
that 1◦ x ≤ y for all y ∈ A and 2◦ X 3 x1 ≤ y for all y ∈ A implies x1 ≤ x [1◦

y ≤ x for all y ∈ A and 2◦ y ≤ x1 ∈ X for all y ∈ A implies x ≤ x1]. Clearly, x
satisfying 1◦ and 2◦ is unique and we denote x := inf A [x := supA]. In particular,
inf{x} = sup{x} = x for each x ∈ X. If for given elements x and y of a poset
(X,≤) the symbol inf{x, y} is used in any equality that we state is true, it means
that inf{x, y} exists in X (and the equality holds).

Definition 1. A poset (X,≤) is called a join-semilattice if

(J) ∀x,y∈X sup {x, y} exists in X.

The element sup{x, y} is called the join of x and y (see [3], p. 6, Definition).

If a given poset (X,≤) is a join-semilattice we denote

x ∨ y := sup {x, y} (2.1)

for any x, y ∈ X. Formula (2.1) determines the binary operation ∨ of join on X.
We denote further a given join-semilattice (X,≤) by (X,∨) to mark explicitly the
operation ∨ of join defined by (2.1). Let us remark that inf{x, y} for given elements x
and y of a join-semilattice (X,∨), called the meet of x and y (see [3], p. 6, Definition),
may exist or not, so the corresponding operation of meet may be treated, in general,
as a partial binary operation on X.

In an analogous way we can define a meet-semilattice with a similar remark. We
will not discuss further the notion of meet-semilattice which is dual to join-semilattice.

In Propositions 1 and 2 below we formulate a list of properties of join-semilattices
corresponding to the respective properties of lattices given in [9] (see Statement 1),
denoting them by (j) with the corresponding indices.

Proposition 1. Let (X,∨) be a join-semilattice. Then

(j1) sup {x1, . . . , xn} exists in X

for arbitrary n ∈ N and x1, . . . , xn ∈ X. Moreover,

sup {x1, . . . , xn} = sup {sup {x1, . . . , xn−1} , xn}

for each n ∈ N \ {1} and x1, . . . , xninX.
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Proposition 2. Let (X,∨) be a join-semilattice. Then

(j2) x ∨ x = x,

(j3) x ∨ y = y ∨ x,

(j5) (x ∨ y) ∨ z = x ∨ (y ∨ z),

(j6) x ≤ x ∨ y, y ≤ x ∨ y,

(j7) x ≤ y ⇔ x ∨ y = y,

(j8) x ≤ y ⇒ z ∨ x ≤ z ∨ y

for arbitrary x, y, z ∈ X.

Definition 2. A join-semilattice (X,∨) is called (a) 0-join-semilattice; (b) 1-join-
semilattice; (c) 0-1-join-semilattice, whenever

(J0) inf X exists in X;

(J1) supX exists in X;

(J2) inf X and supX exist in X,

respectively.

The elements inf X and supX are called the zero and the unit (more exactly: the
order zero and the order unit) in a given join-semilattice (X,∨) and denoted by 0 and
1, respectively. We denote a given (a) 0-join-semilattice; (b) 1-join-semilattice; (c)
0-1-join-semilattice (X,∨) by (a) (X,∨, 0); (b) (X,∨, 1); (c) (X,∨, 0, 1), respectively,
to mark explicitly the existence of the zero or/and the unit in the join-semilattice
(X,∨).

Proposition 3. If (X,∨, 0) is a 0-join-semilattice, then

(j0) 0 ≤ x, x ∨ 0 = 0 ∨ x = x, inf{x, 0} = 0

for each x ∈ X. If (X,∨, 1) is a 1-join-semilattice, then

(j1) x ≤ 1, x ∨ 1 = 1 ∨ x = 1, inf{x, 1} = x

for each x ∈ X.

In the sequel, we will not discuss the notions of 1-join-semilattice or 0-1-join-
semilattice.

Definition 3. A poset (X,≤) is called a lattice if

(L) ∀x,y∈X inf {x, y} and sup {x, y} exist in X.

In other words, a poset (X,≤) is a lattice if it is a join-semilattice and a meet-
semilattice.
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If a given poset (X,≤) is a lattice we denote

x ∧ y := inf {x, y} and x ∨ y := sup {x, y} (2.2)

for any x, y ∈ X. The formulae in (2.2) define the binary operations ∧ and ∨ on X,
respectively. Any lattice (X,≤) with the operations ∧ of meet and ∨ of join given by
(2.2) will be denoted by (X,∧,∨).

Next, we recall some properties of an arbitrary lattice (see [9]).

Proposition 4. Let (X,∧,∨) be a lattice. Then

(l1) inf {x1, . . . , xn} and sup {x1, . . . , xn} exist in X

for arbitrary n ∈ N and x1, . . . , xn ∈ X. Moreover,

inf {x1, . . . , xn} = inf {inf {x1, . . . , xn−1} , xn}

and
sup {x1, . . . , xn} = sup {sup {x1, . . . , xn−1} , xn}

for each n ∈ N \ {1} and x1, . . . , xninX.

Proposition 5. Let (X,∧,∨) be a lattice. Then

(l2) x ∧ x = x, x ∨ x = x,

(l3) x ∧ y = y ∧ x, x ∨ y = y ∨ x,

(l4) (x ∧ y) ∧ z = x ∧ (y ∧ z),

(l5) (x ∨ y) ∨ z = x ∨ (y ∨ z),

(l6) x ∧ y ≤ x ≤ x ∨ y, x ∧ y ≤ y ≤ x ∨ y,

(l7) x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y,

(l8) x ≤ y ⇒ z ∧ x ≤ z ∧ y & z ∨ x ≤ z ∨ y,

(l9) (x ∧ z) ∨ (y ∧ z) ≤ (x ∨ y) ∧ z,

(l10) (x ∧ y) ∨ z ≤ (x ∨ z) ∧ (y ∨ z)

for arbitrary x, y, z ∈ X.

Definition 4. A lattice (X,∧,∨) is called distributive if

(D) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z), x, y, z ∈ X,

or

(D′) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z), x, y, z ∈ X.
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Remark 1. Conditions (D) and (D′) are equivalent (see e.g. [3], p. 11, Theorem
9).

Definition 5. A lattice (X,∧,∨) is called (a) 0-lattice; (b) 1-lattice; (c) 0-1-lattice,
whenever

(L0) inf X exists in X;

(L1) supX exists in X;

(L2) inf X and supX exist in X,

respectively.

The elements inf X and supX are called the zero and the unit (more exactly: the
order zero and the order unit) in a given lattice (X,∧,∨) and denoted by 0 and 1,
respectively. We denote a given (a) 0-lattice; (b) 1-lattice; (c) 0-1-lattice (X,∧,∨) by
(a) (X,∧,∨, 0), (b) (X,∧,∨, 1), (c) (X,∧,∨, 0, 1), respectively, to mark explicitly the
existence of the zero or/and the unit in the lattice (X,∧,∨).

Proposition 6. If (X,∧,∨, 0) is a 0-lattice, then

(l0) 0 ≤ x, x ∨ 0 = 0 ∨ x = x, x ∧ 0 = 0 ∧ x = 0

for any x ∈ X. If (X,∧,∨, 1) is a 1-lattice, then

(l1) x ≤ 1, x ∨ 1 = 1 ∨ x = 1, x ∧ 1 = 1 ∧ x = x

for any x ∈ X.

3. Properties of B-rings

Definition 6. A distributive 0-lattice (X,∧,∨, 0) is called a B-ring if it satisfies
the following condition:

(R) ∀x,y∈X, y≤x ∃z∈X z ∧ y = 0 and z ∨ y = x,

i.e. if the poset (X,≤) satisfies conditions (L), (L0), (D) and (R).

Definition 7. Let (X,∧,∨, 0) be a B-ring and x, y be elements of X such that
y ≤ x. Then by a proper difference of x and y we mean an element z of X satisfying
the identities in (R).

Let us recall the following known uniqueness result (see e.g. [3], p. 12, Theorem
10):

Theorem 1. Let (X,∧,∨) be a distributive lattice and let y, z1, z2 be its arbitrary
elements. If z1 ∧ y = z2 ∧ y and z1 ∨ y = z2 ∨ y, then z1 = z2.
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Remark 2. In any distributive 0-lattice (X,∧,∨, 0), if for given x, y ∈ X with
y ≤ x there exists an element z ∈ X satisfying the two equalities in (R), then this
element, the proper difference of x and y, is unique, in view of Theorem 1.

For any elements x and y such that y ≤ x of any distributive 0-lattice, we denote
the proper difference of x and y by x	 y, i.e.

x	 y = z (y ≤ x) if y ∧ z = 0 and y ∨ z = x. (3.3)

In an arbitrary B-ring (X,∧,∨, 0), formula (3.3) determines the partial binary oper-
ation 	 of proper difference in X defined for all pairs of elements x, y ∈ X such that
y ≤ x. Though the operation 	 of proper difference does not formally appear in Def-
inition 6 it is uniquely determined, due to condition (R) and Theorem 1, via formula
(3.3). Therefore we will use in the sequel the notation (X,∧,∨,	, 0) for B-rings, i.e.
for those distributive 0-lattices (X,∧,∨, 0) which satisfy condition (R).

We formulate below some properties of the operation 	. We start with the asser-
tions, which are direct consequences of (R), (l6) and the above notation.

Proposition 7. If (X,∧,∨,	, 0) is a B-ring, then

∀x,y∈X, y≤x x	 y ≤ x, (x	 y) ∧ y = 0, (x	 y) ∨ y = x.

Proposition 8. If (X,∧,∨,	, 0) is a B-ring, then

∀x,y∈X, y≤x x	 (x	 y) = y.

The following de Morgan properties of the operation 	 are true:

Proposition 9. If (X,∧,∨,	, 0) is a B-ring, then

a	 (x ∧ y) = (a	 x) ∨ (a	 y) and a	 (x ∨ y) = (a	 x) ∧ (a	 y)

for arbitrary a, x, y ∈ X such that x ≤ a and y ≤ a.

Proof. Fix a, x, y ∈ X with x ≤ a and y ≤ a. Taking into account Proposition 7,
we can collect the relations:

x ≤ a, y ≤ a, a	 x ≤ a, a	 y ≤ a. (3.4)

Moreover, according to (R) and Remark 2, we have

x ∧ (a	 x) = y ∧ (a	 y) = 0 and x ∨ (a	 x) = y ∨ (a	 y) = a. (3.5)

Applying (D), (l6), (l8) and the first part of (3.5), we get

(x ∧ y) ∧ [(a	 x) ∨ (a	 y)] ≤ [x ∧ (a	 x)] ∨ [y ∧ (a	 y)] = 0

and, consequently,
(x ∧ y) ∧ [(a	 x) ∨ (a	 y)] = 0. (3.6)
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On the other hand, taking into account (3.4), using properties (l2), (l3), (l5)-(l8),
the distributivity in the form of (D′) and the second part of (3.5), we obtain the
following chain of equalities:

(x ∧ y) ∨ [(a	 x) ∨ (a	 y)]

= [(x ∧ y) ∨ (a	 x)] ∨ [(x ∧ y) ∨ (a	 y)]

= [(x ∨ (a	 x)) ∧ (y ∨ (a	 x))] ∨ [(x ∨ (a	 y)) ∧ (y ∨ (a	 y))]

= [a ∧ (y ∨ (a	 x))] ∨ [(x ∨ (a	 y)) ∧ a]

= [y ∨ (a	 x)] ∨ [x ∨ (a	 y)]

= [x ∨ (a	 x)] ∨ [y ∨ (a	 y)],

i.e., applying again the second part of (3.5) and (l2), we get

(x ∧ y) ∨ [(a	 x) ∨ (a	 y)] = a. (3.7)

According to condition (R) and Remark 2, the equalities (3.6) and (3.7) mean that
the first identity in Proposition 9 holds.

The second identity can be shown in an analogous way. �

Definition 8. A B-ring (X,∧,∨,	, 0) is called a B-algebra if supX exists in X,
i.e. if conditions (L), (L2), (D) and (R) are satisfied.

We denote supX in a B-algebra by 1 and, consequently, the given B-algebra by
(X,∧,∨,	, 0, 1).

The following assertion is straightforward:

Proposition 10. If (X,∧,∨,	, 0) is a B-ring and a is a fixed element of X,
then (Xa,∧,∨,	, 0), where Xa := {x ∈ X : x ≤ a}, is a B-algebra with the unit
1a := supXa = a.

In an arbitrary B-algebra (X,∧,∨,	, 0, 1), for every x ∈ X, the following condi-
tion is satisfied:

(Cx) ∃z∈X z ∧ x = 0 and z ∨ x = 1.

The condition results directly from (R). An element z satisfying the equalities in
condition (Cx) is unique for any x ∈ X (see Remark 2).

Definition 9. Let (X,∧,∨, 0, 1) be a 0-1-lattice. Fix x ∈ X. By a complement of
x we mean an element z ∈ X satisfying condition (Cx). If condition (Cx) is satisfied
for every x ∈ X, then the 0-1-lattice (X,∧,∨, 0, 1) is called complemented (see [3], p.
16).

Remark 3. In any distributive 0-1-lattice (X,∧,∨, 0, 1), if for a given x ∈ X
condition (Cx) is satisfied by z ∈ X, then this z, the complement of x, is unique, in
view of Theorem 1.
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In a distributive 0-1-lattice (X,∧,∨, 0, 1), we denote, for any element x ∈ X
for which condition (Cx) is satisfied, the complement of x by x′. In particular, if
a given distributive 0-1-lattice (X,∧,∨, 0, 1) is complemented we may consider the
unary operation ′ of complement in X, denoting such a lattice by (X,∧,∨, ′, 0, 1).

Definition 10. According to [3], pp. 17-18, by a Boolean algebra we mean a
complemented distributive 0-1-lattice (X,∧,∨, ′, 0, 1) such that the unary operation
′ of complement satisfies the following conditions:

(A1) x ∧ x′ = 0, x ∨ x′ = 1,

(A2) (x′)′ = x,

(A3) (x ∧ y)′ = x′ ∨ y′, (x ∨ y)′ = x′ ∧ y′for any x, y ∈ X.

Theorem 2. Every B-algebra (X,∧,∨,	, 0, 1) is a Boolean algebra (X,∧,∨, ′, 0, 1)
with the unary operation ′ defined by

x′ := 1	 x (3.8)

for any x ∈ X. Conversely, every Boolean algebra (X,∧,∨, ′, 0, 1) is a B-algebra
(X,∧,∨,	, 0, 1) with the binary operation 	 defined by

x	 y := x ∧ y′

for x, y ∈ X such that y ≤ x.

Proof. Let (X,∧,∨,	, 0, 1) be a B-algebra. Hence, in particular, the 0-1-lattice
(X,∧,∨, 0, 1) is distributive and complemented with the operation ′ of complement
defined by formula (3.8). That the operation ′ satisfies conditions (A1) and (A2)
follows from Propositions 7 and 8, respectively, applied for x := 1 and y := x. That
condition (A3) is satisfied follows from Proposition 9 for a := 1. This proves the first
part of Theorem 2.

To prove the second part, since a given Boolean algebra (X,∧,∨, ′, 0, 1) is a dis-
tributive 0-1-lattice, it suffices to verify that condition (R) is fulfilled. Fix x, y ∈ X
such that y ≤ x and put z := x ∧ y′. We obtain

y ∧ z = y ∧ (x ∧ y′) = (y ∧ y′) ∧ x = 0

and
y ∨ z = y ∨ (x ∧ y′) = (y ∨ x) ∧ (y ∨ y′) = x,

applying the two equalities in (A1) as well as properties (l3), (l4), (l7), (l0), (l1) and
(D′). Hence z satisfies the equalities in (R) and, by Theorem 1 and formula (3.3),
z = x	 y. This completes the proof of Theorem 2. �

In any B-ring (X,∧,∨,	, 0), the partial binary operation 	 can be extended to the
binary operation (denoted here by −) on X defined for an arbitrary pair of elements
of X in the following way:
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Definition 11. If (X,∧,∨,	, 0) is a B-ring, then we define the difference x− y
of x and y by

x− y := x	 (x ∧ y) (3.9)

for arbitrary x, y ∈ X.

Notice that definition in (3.9) makes sense, because x ∧ y ≤ x for any x, y ∈ X,
due to property (l6). The binary operation − of difference defined above is consistent
with the partial binary operation 	 of proper difference, introduced in Definition 7,
according to the following obvious property:

Proposition 11. Let (X,∧,∨,	, 0) be a B-ring. If x, y ∈ X and y ≤ x, then
x− y = x	 y.

It should be noted that the above extension − of the operation 	 of proper differ-
ence satisfies an extended form of condition (R) with the corresponding uniqueness
property (cf. Theorem 1 and Remark 2). Namely, the following assertion is true:

Proposition 12. Let (X,∧,∨,	, 0) be a B-ring. Then

(R) ∀x,y∈X ∃z∈X z ∧ y = 0 and z ∨ y = x ∨ y,

and an element z in (R) is unique, given by z := x− y.

Proposition 12 is a consequence of the following two facts. That for arbitrary
x, y ∈ X in a B-ring the two identities required in condition (R) are satisfied by
z := x− y follows from the two last equalities from part 2◦ of Proposition 14 proved
below. That this z is unique follows directly from the known uniqueness result cited
above as Theorem 1.

In addition to the uniqueness property concerning the operation of difference,
formulated in Proposition 12, we will give below a series of properties of this operation
in any B-ring. Let us start with the following easy consequence of Definition 11 and
Proposition 12:

Proposition 13. Let (X,∧,∨,	, 0) be a B-ring. We have

x− 0 = x	 0 = x, x− x = x	 x = 0, 0− x = 0 (3.10)

for every x ∈ X.

Properties 1-15 formulated in [9] contain the statement expressed in Proposition
12 and several other properties recalled in Proposition 14 below. Proofs of some of
the properties were omitted in [9]. We complete below all the omitted proofs. The
properties will be used in the proofs of certain characterizations given in section .

Proposition 14. Let (X,∧,∨,	, 0) be a B-ring. The following properties of the
binary operation − of difference on X hold true:

1◦ x− y ≤ x, (x− y) ∧ (x ∧ y) = 0, (x− y) ∨ (x ∧ y) = x,
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2◦ (x− y) ∧ (y − x) = 0, (x− y) ∧ y = 0, (x− y) ∨ y = x ∨ y,

3◦ (x− y) ∨ (y − x) ∨ (x ∧ y) = x ∨ y,

4◦ x ≤ y ⇒ (z − y) ∧ x = 0, x ≤ y ⇒ (z − y)− x = z − y,

5◦ x ≤ y ⇒ z − y ≤ z − x,

6◦ z − (x ∨ y) = (z − x) ∧ (z − y), z − (x ∧ y) = (z − x) ∨ (z − y),

7◦ z − (x ∨ y) = (z − x)− y, (x ∨ y)− z = (x− z) ∨ (y − z),

8◦ (x− y) ∧ z = (x ∧ z)− (y ∧ z)

for any x, y, z ∈ X.

Proof. Since x− y = x	 (x ∧ y), by the definition in (3.9), the three properties
in 1◦ follow directly from Proposition 7.

To prove the first property in 2◦ assume that

u ≤ x− y = x	 (x ∧ y) and u ≤ y − x = y 	 (x ∧ y). (3.11)

Therefore, by the first property in 1◦, we have u ≤ x, u ≤ y and, consequently,
u ≤ x ∧ y, due to (l8), (l3 and (l2). Hence u = 0, in view of (3.11) and the second
assertion in Proposition 7. Thus

(x− y) ∧ (y − x) = inf{x− y, y − x} = 0, (3.12)

as required.
To show the two remaining properties in 2◦ together with property 3◦ we use the

representations:

y = [y 	 (x ∧ y)] ∨ (x ∧ y) = (y − x) ∨ (x ∧ y), (3.13)

following from Proposition 7 and (3.9). Applying (3.13), the distributivity condition
(D) as well as the properties (l2), (l3) and (l5), we obtain

(x− y) ∧ y = (x− y) ∧ [(y − x) ∨ (x ∧ y)]

= [(x− y) ∧ (y − x)] ∨ [(x− y) ∧ (x ∧ y)] = 0,

and

(x− y) ∨ y = (x− y) ∨ (y − x) ∨ (x ∧ y)

= [(x− y) ∨ (x ∧ y)] ∨ [(y − x) ∨ (y ∧ x)] = x ∨ y,

in view of (3.12) and the two last identities in 1◦. The proof of the third property in
2◦ was given also in [9] (see the proof of Property 5 there).

To prove the assertions in 4◦ and 5◦ assume that x, y, z ∈ X and x ≤ y. We have

(z − y) ∧ x ≤ (z − y) ∧ y = 0, (3.14)
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by (l8) and the second identity in 2◦, and hence

z − y = [(z − y)− x] ∨ [(z − y) ∧ x] = (z − y)− x, (3.15)

by the third identity in 1◦. The assertions in 4◦ follow from (3.14) and (3.15).
Further, z ∧ x ≤ z ∧ y ≤ z and z− y ≤ z, according to our assumption and due to

(l6), (l8) and the first property in 1◦, so we may write

z − y = (z − y) ∧ z = [z 	 (z ∧ y)] ∧ [(z 	 (z ∧ x)) ∨ (z ∧ x)], (3.16)

in view of (l7) and Proposition 7. But, since z ∧ x ≤ z ∧ y, we have

[z 	 (z ∧ y)] ∧ (z ∧ x) = [z − (z ∧ y)] ∧ (z ∧ x) = 0,

by the first property in 4◦, already proved. Therefore, in view of the distributivity
condition (D), the equations in (3.16) yield

z − y = [z 	 (z ∧ y)] ∧ [(z 	 (z ∧ x))] = (z − y) ∧ (z − x),

which means, due to (l7), that the assertion in 5◦ is proved (see also the proof of
Property 10 in [9]).

The two assertions in 6◦ are consequences of Definition 11 and Proposition 9.
Namely, we conclude from them the identity

z − (x ∨ y) = z 	 [z ∧ (x ∨ y)] = z 	 [(z ∧ x) ∨ (z ∧ y)]

= [z 	 (z ∧ x)] ∧ [z 	 (z ∧ y)] = (z − x) ∧ (z − y),

using additionally the distributivity property (D), and the identity

z − (x ∧ y) = z 	 [z ∧ (x ∧ y)] = z 	 [(z ∧ x) ∧ (z ∧ y)]

= [z 	 (z ∧ x)] ∨ [z 	 (z ∧ y)] = (z − x) ∨ (z − y),

using here, in addition, properties (l2)− (l4).
Complete proofs of the three remaining properties formulated in 7◦ and 8◦ are

given in [9] (see Properties 13-15). �

We will need also some additional properties of the operation of difference in
B-rings.

Proposition 15. Let (X,∧,∨,	, 0) be a B-ring. Then

[(x− y) ∨ (y − x)] ∧ (x ∧ y) = 0 (3.17)

(x− y) ∧ [z − (x ∨ y)] = 0, (y − x) ∧ [z − (x ∨ y)] = 0, (3.18)

(x− y) ∧ (x ∧ y ∧ z) = 0, (y − x) ∧ (x ∧ y ∧ z) = 0 (3.19)

for any x, y, z ∈ X.
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Proof. Applying (D), (l6), (l8) and the second property in part 2◦ of Proposition
14, we get

[(x− y) ∨ (y − x)] ∧ (x ∧ y) ≤ [(x− y) ∧ y] ∨ [(y − x) ∧ x] = 0,

i.e. equality (3.17) is shown.
In view of property (l3), it remains to prove the first equalities in (3.18) and (3.19).

We have x− y ≤ x and z− (x∨ y) ≤ z−x, by the first assertion in 1◦ and by 5◦ from
Proposition 14. Therefore, using (l6) and (l2), we get

(x− y) ∧ [z − (x ∨ y)] ≤ x ∧ (z − x) = 0,

and, similarly,

(x− y) ∧ (x ∧ y ∧ z) ≤ [x− (x ∧ y)] ∧ (x ∧ y) = 0,

due to the second assertion in part 2◦ of Proposition 14. The required equalities are
proved and the proof of the proposition is completed. �

4. Properties of ∆-join-semilattices

Definition 12. We say that a 0-join-semilattice (X,∨, 0) is meet-invariant if the
following implication holds:

(Im) if inf{x, y} = 0, then inf{x ∨ z, y ∨ z} = z for any x, y, z ∈ X.

Proposition 16. Each distributive 0-lattice (X,∧,∨, 0) is meet-invariant.

Proof. Suppose that x, y ∈ X and inf{x, y} = 0. Then, from the distributivity
law (D′), we have

inf{x ∨ z, y ∨ z} = (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z = z

for every z ∈ X, i.e. condition (Im) is fulfilled. �

Definition 13. We say that a 0-join-semilattice (X,∨, 0) is a ∆-join-semilattice
if it is meet-invariant and satisfies the following condition:

(∆) ∀x,y∈X ∃z∈X inf{y, z} = 0 and y ∨ z = x ∨ y.

In particular, condition (∆) in any 0-join-semilattice (X,∨, 0) yields:

(∆0) ∀x,y∈X,y≤x ∃z∈X inf{y, z} = 0 and y ∨ z = x.

Proposition 17. If (X,∨, 0) is a ∆-join-semilattice, then for every pair of
elements x, y ∈ X there exists a unique z such that the equalities in condition (∆) are
satisfied. In particular, a similar uniqueness holds in case of (∆0).
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Proof. Fix x, y ∈ X. Suppose that there exist elements z1, z2 in X satisfying
condition (∆), that is:

inf{y, zi} = 0 and y ∨ zi = x ∨ y (i = 1, 2).

Hence, by condition (Im) we have

z1 = inf{y ∨ z1, z2 ∨ z1} = inf{y ∨ z2, z1 ∨ z2} = z2,

which proves that the assertion is true. �

Definition 14. Let (X,∨, 0) be a ∆-join-semilattice and let x, y be arbitrary
elements of X. Then by a difference of x and y we mean an element z of X satisfying
the identities in (∆).

A difference of any elements x and y in an arbitrary ∆-join-semilattice (X,∨, 0)
exists and is unique (see condition (∆) and Proposition 17). We denote the difference
of elements x and y by xr y, i.e.

xr y = z if inf{y, z} = 0 and y ∨ z = x ∨ y. (4.20)

If (X,∨, 0) is a ∆-join-semilattice, then formula (4.20) determines the binary operation
r of difference in X. In particular, if y ≤ x we call x r y the proper difference of x
and y, i.e.

xr y = z (y ≤ x) if inf{y, z} = 0 and y ∨ z = x. (4.21)

Remark 4. Though the operation r of difference does not formally appear in
Definition 13 it is uniquely determined, due to conditions (∆), (Im) and Proposition
17, via formula (4.20). Therefore we will use in the sequel the notation (X,∨,r, 0) for
∆-join-semilattices, i.e. for those 0-join-semilattices (X,∨, 0) which are meet-invariant
and satisfy condition (∆).

Lemma 1. If (X,∨,r, 0) is a ∆-join-semilattice, then

xr y ≤ x (4.22)

for any x, y ∈ X.

Proof. Let z := xr y. In view of Definition 14 the element z satisfies condition
(∆), i.e. the following equalities hold:

inf{y, z} = 0 and y ∨ z = x ∨ y. (4.23)

Then, by (Im) and (4.23), we have

x = inf{y ∨ x, z ∨ x} = inf{y ∨ z, x ∨ z}. (4.24)

On the other hand, in view of (j6), we have the two relations:

z ≤ y ∨ z and z ≤ x ∨ z,
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which imply, due to (4.24), that

z ≤ inf{y ∨ z, x ∨ z} = x.

The relation (4.22) is proved. �

Lemma 2. If (X,∨,r, 0) is a ∆-join-semilattice, then x r (x r y) ≤ y for any
x, y ∈ X.

Proof. Let z := xr y and u := xr (xr y) = xr z. By Lemma 1, we have z ≤ x
and thus xr z is a proper difference. Hence, by Definition 14 (see (4.20) and (4.21)),
we obtain the equalities

inf{y, z} = 0 and y ∨ z = x ∨ y (4.25)

as well as the identities

inf{z, u} = 0 and z ∨ u = x. (4.26)

Then, in view of (4.25), (4.26), (j3) and (j5) we have

y ∨ z = x ∨ y = (z ∨ u) ∨ y = (y ∨ z) ∨ u.

Hence, by (j7), we get u ≤ y ∨ z. On the other hand, we have u ≤ u∨ y, by (j6). The
last two relations, the first equality in (4.26) and condition (Im) imply

u ≤ inf{z ∨ y, u ∨ y} = y

and the assertion is shown. �

Lemma 3. Let (X,∨,r, 0) be a ∆-join-semilattice and x, y, u ∈ X. If u ≤ x ∨ y
and inf{x, u} = 0, then u ≤ y.

Proof. Since u ≤ x ∨ y and u ≤ u ∨ y, by (j6), we have

u ≤ inf{x ∨ y, u ∨ y} = y

in view of condition (Im) and the assumption that inf{x, u} = 0. �

Lemma 4. Let (X,∨,r, 0) be a ∆-join-semilattice and x, y, u ∈ X. If u ≤ x and
u ≤ y, then inf{u, xr y} = 0.

Proof. Let z := xr y. In view of Definition 14, the element z satisfies condition
(∆), i.e. the following equalities hold:

inf{y, z} = 0 and y ∨ z = x ∨ y. (4.27)

Let u ≤ x, u ≤ y and let v ≤ u, v ≤ xr y = z. Since v ≤ u ≤ y and v ≤ z, we have

v ≤ inf{y, z} = 0,

by (4.27). Hence v = 0. Consequently, inf{u, xr y} = 0. �
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Lemma 5. Let (X,∨,r, 0) be a ∆-join-semilattice and x, y, u ∈ X. If u ≤ x and
u ≤ y, then u ≤ xr (xr y).

Proof. Let y1 := xr y and z1 := xr (xr y). By Lemma 1, we have y1 ≤ x, so
xr y1 is a proper difference. By Definition 14 (see (4.21)), we get

inf{y1, z1} = 0 and y1 ∨ z1 = x. (4.28)

Since u ≤ x, we have

u ≤ y1 ∨ z1, (4.29)

due to the second equality in (4.28). Since u ≤ x and u ≤ y, we have

inf{u, y1} = inf{u, xr y} = 0 (4.30)

in view of Lemma 4. Hence, by Lemma 3, conditions (4.29) and (4.30) imply

u ≤ z1 = xr (xr y). �

Proposition 18. Let (X,∨,r, 0) be a ∆-join-semilattice. Then

inf{x, y} = xr (xr y) ∈ X, (4.31)

i.e. inf{x, y} exists in X for any x, y ∈ X. Moreover, if ∧ is a binary operation on
X given by

x ∧ y := inf{x, y} for x, y ∈ X, (4.32)

then (X,∧,∨, 0) is a 0-lattice satisfying conditions (R) and (Im).

Proof. Fix arbitrarily x, y ∈ X. In view of Lemma 1 and 2, we have

xr (xr y) ≤ x and xr (xr y) ≤ y,

so x r (x r y) is a lower bound of elements x, y. Due to Lemma 5, the element
xr(xry) is the greatest lower bound of elements x, y, which means that the equality
in (4.31) holds and so inf{x, y} exists in X.

Consequently, formula (4.32) well defines the binary operation ∧ on X and
(X,∧,∨, 0) is a 0-lattice which satisfies condition (R). The latter results from the
fact that (R) is an equivalent form of condition (∆0) which is a particular case of
condition (∆), assumed for the given ∆-join-semilattice (X,∨,r, 0).

Remark 5. Notice that condition (Im) can be now expressed in the following
equivalent form:

(I ′m) (x ∨ z) ∧ (y ∨ z) = z, whenever x ∧ y = 0 for any x, y, z ∈ X.
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Proposition 19. Let (X,∨,r, 0) be a ∆-join-semilattice. Then the binary
operation ∧ given by (4.32) is distributive, i.e.

(x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z (4.33)

for arbitrary x, y, z ∈ X. Consequently (X,∧,∨,	, 0) is a B-ring, where the partial
binary operation 	 is given by

x	 y := xr y

for arbitrary x, y ∈ X such that y ≤ x.

Proof. Let x, y, z be arbitrary elements of X and denote

u := x ∧ y. (4.34)

By (4.31) and (4.32) in Proposition 18, it follows that u ∈ X. Clearly, we have

u ≤ x, u ≤ y, xr u ≤ x, y r u ≤ y, (4.35)

where xr u and y r u are proper differences, by (4.34) and Lemma 1. Moreover,

inf{u, xr u} = 0 = inf{u, y r u}, (4.36)

by the first equality in (∆0).
To prove the identity

inf{xr u, y r u} = 0 (4.37)

suppose that v ≤ xr u and v ≤ y r u. Hence, by the last two relations in (4.35), we
have v ≤ x and v ≤ y, so v ≤ inf{x, y} = u, in view of (4.34). But then (4.36) implies
that v = 0, which proves equality (4.37).

On the other hand, by the second equality in (∆0), we have

x = u ∨ (xr u) and y = u ∨ (y r u). (4.38)

Hence, by (4.38), (4.37) and (Im), we have

(x ∨ z) ∧ (y ∨ z) = [(xr u) ∨ (u ∨ z)] ∧ [(y r u) ∨ (u ∨ z)]
= u ∨ z = (x ∧ y) ∨ z,

according to (j3), (j5) and the notation in (4.34), i.e. the distributivity law (4.33) is
proved. �

5. Duality theorems

Theorem 3. Assume that (X,∨,r, 0) is a ∆-join-semilattice, where the bi-
nary operation r is given by (4.20), according to conditions (Im) and (∆). Then
(X,∧,∨,	, 0) is a B-ring with the binary lattice operation ∧, given by

x ∧ y := inf{x, y} = xr (xr y) for x, y ∈ X,
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and the partial binary operation 	 of proper difference, given by

x	 y := xr y for x, y ∈ X, y ≤ x.

Conversely, assume that (X,∧,∨,	, 0) is a B-ring, where the partial binary op-
eration 	 of proper difference is given by (3.3), according to condition (R). Then
(X,∨,r, 0) is a ∆-join-semilattice with the binary operation r given, according to
(Im), (∆) and (4.20), by

xr y := x	 (x ∧ y) for x, y ∈ X.

Proof. That a given ∆-join-semilattice (X,∨,r, 0) is a B-ring follows directly
from Propositions 18 and 19.

To show the second part of the assertion it suffices to notice that conditions (Im)
and (∆) in a given B-ring (X,∧,∨,	, 0) follow from Propositions 16 and 12, respec-
tively, because the extension (R) of condition (R) is an equivalent form of condition
(∆).

The proof of Theorem 3 is completed. �

Definition 15. By an algebraic ring (X,+, ·) we mean a nonempty set X endowed
with two binary operations: + (addition) and · (multiplication) such that (X,+) is
an Abelian group and the multiplication is associative and distributive with respect
to the addition. By a commutative ring we mean an algebraic ring (X,+, ·) in which
the operation · is commutative.

Definition 16. By a Boolean ring we mean an algebraic ring (X,+, ·) in which
the operation · of the multiplication is idempotent, i.e. x2 = x for every x ∈ X. By
a Boolean ring with unit we mean a Boolean ring in which there is a unique neutral
element of the multiplication.

Remark6. It follows from Lemma 8 below that every Boolean ring is commutative.

Let (X,∧,∨,	, 0) be a B-ring. Define in (X,∧,∨,	, 0) the two binary operations
+ and · as follows:

x+ y := (x ∨ y)	 (x ∧ y) = (x ∨ y)− (x ∧ y) (5.39)

and
x · y := x ∧ y. (5.40)

for arbitrary x, y ∈ X.

Remark 7. In any B-ring (X,∧,∨,	, 0), the binary operation + on X can be
defined in two ways by formula (5.39), because x ∧ y ≤ x ∨ y and thus the difference
u − v and the proper difference u 	 v of u := x ∨ y and v := x ∧ y coincide, by
Proposition 12, for any x, y ∈ X.
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Due to our extension in Definition 11 of the partial binary operation 	 of proper
difference to the binary operation − of difference in B-rings, the above definition
of the operation + can be expressed in an equivalent form, given by formula (5.41)
below. In fact, it follows from Proposition 20 proved below that formulae (5.39) and
(5.41) stand for two equivalent definition of the binary operation +.

Formulae (5.39) and (5.41) correspond to the known representations of symmetric
difference of two sets.

Proposition 20. Let (X,∧,∨,	, 0) be a B-ring. Then

x+ y = (x− y) ∨ (y − x) (5.41)

for arbitrary x, y ∈ X, where x+ y is given by formula (5.39).

Proof. Fix x, y ∈ X and put z := (x − y) ∨ (y − x). We have to prove that z
coincides with x+ y, i.e. that z = a	 b, where a := x ∨ y and b := x ∧ y. According
to Definition 7 and Remark 2 it suffices to verify that the respective equations in
condition (R) hold, i.e. we have the following identities: z ∧ b = 0 and z ∨ b = a. But
they have been already proved in Proposition 15 in the form of (3.17) and in part 3◦

of Proposition 14. �

Now we will show some properties of a B-ring needed in the proof of Theorem 4.

Lemma 6. Let (X,∧,∨,	, 0) be a B-ring. Then

z − (x+ y) = [z − (x ∨ z)] ∨ (x ∧ y ∧ z) (5.42)

for arbitrary x, y, z ∈ X, where x+ y is given by formula (5.39).

Proof. We will use in the proof condition (R), a generalization of condition (R)
proved in Proposition 12.

Fix x, y, z ∈ X and denote a := x− y and b := y − x, i.e.

x+ y = a ∨ b, (5.43)

due to Proposition 20.
According to Proposition 12 it is enough to show the two equalities:

(x+ y) ∧ c = 0 and (x+ y) ∨ c = (x+ y) ∨ z, (5.44)

where
c := [z − (x ∨ y)] ∨ (x ∧ y ∧ z).

Using definition (5.39) of x+ y, we get

(x+ y) ∧ [z − (x ∨ y)] = 0, (5.45)

in view of the distributivity law (D) as well as both equalities in (3.18), proved in
Proposition 15. In a similar way the equalities in (3.19) imply that

(x+ y) ∧ (x ∧ y ∧ z) = 0. (5.46)
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From (5.45) and (5.46) again using (D), we obtain the first equality in (5.44).
To prove the second equality in (5.44), notice first that

(x+ y) ∨ c ≤ (x+ y) ∨ z, (5.47)

since z − (x ∨ y) ≤ z and x ∧ y ∧ z ≤ z, by part 1◦ of Proposition 14 and (l6).
On the other hand, we have

x ∨ y = a ∨ b ∨ (x ∧ y), a ∧ z ≤ a, b ∧ z ≤ b, (5.48)

by property 3◦ in Proposition 14 and (l6). In view of (5.48) and (D), we have

(x ∨ y) ∧ z ≤ [(a ∨ b) ∨ (x ∧ y)] ∧ z ≤ (a ∨ b) ∨ (x ∧ y ∧ z)
= (x+ y) ∨ (x ∧ y ∧ z),

according to (l8) and our notation (5.43). Hence, by the third identity in part 1◦ in
Proposition 14, we have

z = [z ∧ (x ∨ y)] ∨ [z − (x ∨ y)]

≤ (x+ y) ∨ (x ∧ y ∧ z) ∨ [z − (x ∨ y)] = (x+ y) ∨ c

and consequently,

(x+ y) ∨ z ≤ (x+ y) ∨ c, (5.49)

by (l2) and (l8). Now the second identity in (5.44) follows from relations (5.47) and
(5.49). �

Lemma 7. Let (X,∧,∨,	, 0) be a B-ring. Then

(x+ y) + z = x+ (y + z) (5.50)

for arbitrary x, y, z ∈ X.

Proof. By Proposition 20 and both identities in 7◦ in Proposition 14, we have

(x+ y)− z = [(x− y) ∨ (y − x)]− z
= [(x− y)− z] ∨ [(y − x)− z]
= [x− (y ∨ z)] ∨ [y − (x ∨ z)]

and thus, by (5.41) and (5.42), we obtain

(x+ y) + z = [(x+ y)− z] ∨ [z − (x+ y)]

= [x− (y ∨ z)] ∨ [y − (x ∨ z)]
∨ [z − (x ∨ y)] ∨ (x ∧ y ∧ z) (5.51)

for arbitrary x, y, z ∈ X.
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Replacing x by y, y by z and z by x in (5.51), we get

(y + z) + x = [y − (z ∨ x)] ∨ [z − (y ∨ x)] ∨ [x− (y ∨ z)]
∨ (y ∧ z ∧ x). (5.52)

We see that the right hand sides of (5.51) and (5.52) coincide due to (l3)-(l5), and
hence (5.50) is true for all x, y, z ∈ X. �

We will prove the following theorem:

Theorem 4. If (X,∧,∨,	, 0) is a B-ring, then (X,+, ·) is a Boolean ring with
the operations + and · given by (5.39) and (5.40), i.e.

x+ y := (x ∨ y)	 (x ∧ y) = (x ∨ y)− (x ∧ y)

and
x · y := x ∧ y.

for all x, y ∈ X and the neutral element of the operation + in (X,+, ·) coincides with
the above 0, the order zero in (X,∧,∨,	, 0).

Proof. Let (X,∧,∨,	, 0) be a given B-ring. By (5.41) and (l3), we have x+ y =
y + x for x, y ∈ X, i.e. the operation + is commutative and its associativity was
proved in Lemma 7.

In view of (5.39) and (l0), we get

x+ 0 = (x ∨ 0)	 (x ∧ 0) = x	 0 = x for x ∈ X,

by the first equality in (3.10) in Proposition 13. Hence, the element 0 = inf X from
the given B-ring is the neutral element (the unique 0 satisfying x + 0 = x for all
x ∈ X) of the operation + of addition. By equality (5.41) in Proposition 20 and by
the second equality in (3.10) in Proposition 13, we have

x+ x = (x− x) ∨ (x− x) = 0 ∨ 0 = 0 for x ∈ X,

due to (l0) or (l2), i.e. every element x is the inverse to itself, with respect to the
operation + of addition in (X,+, ·).

In view of (l3), we have

x · y = x ∧ y = y ∧ x = y · x for x, y ∈ X,

i.e. the multiplication · is commutative in (X,+, ·). We have

x · x = x ∧ x = x for x ∈ X,

by (l2), so the multiplication · is idempotent in (X,+, ·). Moreover, by (l4), we get

(x · y) · z = (x ∧ y) ∧ z = x ∧ (y ∧ z) = x · (y · z) for x, y, z ∈ X,
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which proves that the multiplication · is associative in (X,+, ·).
In view of Proposition 20, part 8◦ of Proposition 14 and (D), we get

x · z + y · z = [(x ∧ z)− (y ∧ z)] ∨ [(y ∧ z)− (x ∧ z)]
= [(x− y) ∧ z] ∨ [(y − x) ∧ z]
= [(x− y) ∨ (y − x)] ∧ z = (x+ y) · z

for arbitrary x, y, z ∈ X. The last equality implies that the operation + of addition
is distributive with respect to the operation · of multiplication.

The proof is completed. �

The following assertion follows directly from Theorems 3 and 4.

Theorem 5. If (X,∨,r, 0) is a ∆-join-semilattice, then (X,+, ·) is a Boolean
ring with + and · given by

x+ y := (x ∨ y) r [xr (xr y)] and x · y := xr (xr y)

for all x, y ∈ X and the neutral element of the operation + in (X,+, ·) coincides with
the above 0, the order zero in (X,∨,r, 0).

Now assume that (X,+, ·) is a Boolean ring (with the neutral element 0 of the
operation + of addition) and define in X the relation ≤ in the following way:

x ≤ y :⇔ x · y = x. (5.53)

We will prove that (X,≤) is a poset, satisfying conditions (L) and (L0), i.e. a 0-lattice
with the lattice operations ∧ and ∨ defined as in Definition 3:

x ∧ y := inf{x, y} and x ∨ y := sup{x, y} for x, y ∈ X, (5.54)

with
0 = inf X, (5.55)

where 0 is the mentioned above neutral element of the operation + in the Boolean
ring (X,+, ·). Moreover, we will show that this 0-lattice is distributive and satisfies
condition (R), i.e. it is a B-ring, with the partial binary operation 	 of proper
difference introduced according to Definition 7, and the identities

x ∧ y = x · y and x ∨ y = x+ y + x · y (5.56)

are satisfied for all x, y ∈ X.

We recall certain algebraic properties of groups and Boolean rings that we need
in the proof of Theorem 6.

Lemma 8. If (X,+) is a group, then x+ y = x implies y = 0 for any x, y ∈ X.
If (X,+, ·) is a Boolean ring, then it is commutative and x+ x = 0 for every x ∈ X.
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Proof. In a given group (X,+), fix elements x and y such that x+ y = x. Then

y = 0 + y = ((−x) + x) + y = (−x) + (x+ y) = (−x) + x = 0,

which proves the first part of the lemma.
Since in a given Boolean ring (X,+, ·) the multiplication is idempotent, we have

x+ y = (x+ y)2 = x2 + y · x+ x · y + y2 = x+ y + y · x+ x · y

for arbitrary x, y ∈ X and hence, by the first part of the lemma,

y · x+ x · y = 0 for x, y ∈ X. (5.57)

Putting y = x in (5.57), we get 0 = x2 + x2 = x + x for each x ∈ X, which means
that the last part of the lemma is true. Hence, by (5.57),

y · x = −x · y = x · y for x, y ∈ X,

which shows that the ring (X,+, ·) is commutative, as stated in the middle part of
the lemma. Thus the proof is completed. �

Theorem 6. If (X,+, ·) is a Boolean ring, then (X,∧,∨,	, 0) is a B-ring in a
poset (X,≤), where ≤ is defined by (5.53), the lattice operations ∧ and ∨ are given by
(5.54), the order zero 0 coincides with the neutral element of the addition in (X,+, ·)
and the operation 	, determined by condition (R), is given by

x	 y := x+ y for x, y ∈ X suchthat y ≤ x.

Moreover, the lattice operations ∧ and ∨ defined in (5.54) are connected with the ring
operations + and · in the given (X,+, ·) by means of formulae in (5.56).

Proof. Let (X,+, ·) be a Boolean ring. We start with proving that the relation
≤ defined in (5.53) is a partial order, i.e. (X,≤) is a poset. In the proof of this fact
as well as of properties of the operations + and · defined by (5.54) we will often apply
the definition of ≤ given in (5.53).

By the assumption, we have x2 = x and so x ≤ x for any x ∈ X, in view of (5.53).
If x ≤ y and y ≤ x, then x · y = x and y · x = y, according to (5.53), so x = y for
any x, y ∈ X. Assume that x ≤ y and y ≤ z for given x, y, z ∈ X. By (5.53), we have
x · y = x and y · z = y, so

x · z = (x · y) · z = x · (y · z) = x · y = x,

which means that x ≤ z, in view of (5.53) again. Consequently, (X,≤) is a poset.
If 0 denotes the neutral element of the addition + in the given Boolean ring, then

0 · x = 0 and so, by (5.53), we have 0 ≤ x for any x ∈ X. On the other hand, fix
a ∈ X such that a ≤ x and so a · x = a for all x ∈ X, due to (5.53). In particular,
we have a = a · 0 = 0. Hence 0 is the greatest lower bound of X and equality (5.55)
holds.
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Fix arbitrarily x, y ∈ X and denote

u := x+ y + x · y and v := x · y. (5.58)

By associativity, commutativity and idempotency of the operation · of multiplica-
tion, we get

v · x = (x · y) · x = x2 · y = x · y = v and v · y = x · y2 = x · y = v,

i.e. v ≤ x and v ≤ y, according to (5.53). But if a ≤ x and a ≤ y, i.e. a · x = a and
a · y = a, then we obtain

a · v = a2 · (x · y) = (a · x) · (a · y) = a · a = a,

due to the mentioned properties again, which means that a ≤ v, according to (5.53).
This shows that inf{x, y} = v ∈ X.

Now, applying distributivity of + with respect to · and other properties of these
operations, we obtain

x · u = x2 + x · y + x2 · y = x+ x · y + x · y = x

and
y · u = x · y + y2 + x · y2 = y + x · y + x · y = y,

in view of Lemma 8. Hence, by (5.53), we have

x ≤ u and y ≤ u. (5.59)

On the other hand, if x ≤ a and y ≤ a, then x · a = x and y · a = y, so

a · u = a · x+ a · y + (a · x) · y = x+ y + x · y = u,

i.e. u ≤ a, again due to (5.53). This and (5.59) mean that sup{x, y} = u ∈ X.
We have thus shown that inf{x, y} and sup{x, y} exist in X and moreover, accord-

ing to the notation introduced in (5.54) and (5.58), the equalities in (5.56) hold for
all x, y ∈ X. Consequently, the poset (X,≤) is a 0-lattice with the lattice operations
∧ and ∨, given by (5.54) and (5.56), and the order zero equal to the neutral element
0 of the operation + of additivity in (X,+, ·). We may denote it now by (X,∧,∨, 0).
In view of (5.56) and properties of the operations + and · in (X,+, ·), we have

x ∧ (y ∨ z) = x · (y + z + y · z) = x · y + x · z + x · y · z
= x · y + x · z + (x · y) · (x · z) = (x ∧ y) ∨ (x ∧ z)

for arbitrary x, y, z ∈ X, which proves that the 0-lattice (X,∧,∨, 0) is distributive.
Fix now elements x, y ∈ X such that y ≤ x and put z := x+y. By (5.56), Lemma

8 and properties of the operations + and · in (X,+, ·), we get

z ∧ y = z · y = (x+ y) · y = x · y + y2 = y + y = 0,
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and

z ∨ y = (x+ y) + y + (x+ y) · y = x+ (y + y) + x · y + y2

= x+ (y + y) + (y + y) = x,

which means that z satisfies the equalities in condition (R). Consequently the 0-
lattice (X,∧,∨, 0) is a B-ring in which the operation 	 is defined by x	y = z, where
z := x+ y for any x, y ∈ X such that y ≤ x. �

Theorems 3 and 6 imply the following assertion:

Theorem 7. If (X,+, ·) is a Boolean ring, then (X,∨,r, 0) is a ∆-join-semilattice
in a poset (X,≤), where ≤ is defined by (5.53), the operation ∨ is given by

x ∨ y := x+ y + x · y for x, y ∈ X,

the order zero 0 coincides with the neutral element of the addition in (X,+, ·) and the
binary operation r, determined by conditions (∆) and (Im), is given by

xr y := x+ x · y for x, y ∈ X.

Remark 8. Notice that in Theorems 4 and 5 we do not assume that the order
unit 1 = supX exists in (X,≤); consequently, the algebraic ring (X,+, ·) in the asser-
tions may not contain a unit, a neutral element of the operation · of multiplication.
Similarly, in Theorems 6 and 7 we do not assume that the algebraic ring (X,+, ·) con-
tains a neutral element of the multiplication · and, consequently, the order unit supX
may not exist in (X,≤). Adding the respective assumptions we get the respective
particular cases of the above theorems.

Acknowledgement. We express our thanks to Professor A. Kamiński for his
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