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Abstract: We consider a certain vector differential equation of the
fifth order with a constant delay. We give new certain sufficient conditions
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1. Introduction

In 2003, Sadek [5] considered the nonlinear vector differential equation of the fifth
order:

X(5) + Ψ(Ẍ)
...
X + Φ(Ẍ) + Θ(Ẋ) + F (X) = 0. (1.1)

The author gave certain sufficient conditions, which guarantee the instability of the
zero solution of Eq. (1.1).

In this paper, instead of Eq. (1.1), we consider its delay form as follows:

X(5) + Ψ(Ẍ)
...
X + Φ(X, Ẋ, Ẍ)Ẍ +H(Ẋ(t− τ)) + F (X(t− τ)) = 0, (1.2)

whereX ∈ <n, τ > 0 is the constant deviating argument, Ψ and Φ are continuous n×n
-symmetric matrix functions for the arguments displayed explicitly, H : <n → <n and
F : <n → <n with H(0) = F (0) = 0, and H and F are continuous functions for the
arguments displayed explicitly. It is assumed the existence and the uniqueness of the
solutions of Eq. (1.2).

Eq. (1.2) is the vector version for systems of real nonlinear differential equations
of the fifth order:

x
(5)
i +

n∑
k=1

ψik(x′′1 , , ..., x
′′
k)x′′′k +

n∑
k=1

φik(x1, , ..., xk, ..., x
′′
1 , , ..., x

′′
k)x′′k

+ hi(x
′
1(t− τ), ..., x′n(t− τ)) + fi(x1(t− τ), ..., xn(t− τ)) = 0,

for i = 1, 2, ..., n.



122 C. Tunç

Instead of Eq. (1.2), we consider its equivalent differential system

Ẋ = Y, Ẏ = Z, Ż = W, Ẇ = U,

U̇ = − Ψ(Z)W − Φ(X,Y, Z)Z −H(Y )− F (X)

+

t∫
t−τ

JH(Y (s))Z(s)ds+

t∫
t−τ

JF (X(s))Y (s)ds, (1.3)

which was obtained by setting Ẋ = Y, Ẍ = Z,
...
X = W and X(4) = U from Eq. (1.2).

JF (X) and JH(Y ) denote the Jacobian matrices corresponding to the functions
F (X) and H(Y ) , respectively. It is clear that

JF (X) =

(
∂fi
∂xj

)
and

JH(Y ) =

(
∂hi
∂yj

)
, (i, j = 1, 2, ..., n),

where (x1, ..., xn), (y1, ..., yn), (f1, ..., fn) and (h1, ..., hn) are components of X, Y, F
and H, respectively. Throughout what follows, it is assumed that JF (X) and JH(Y )
exist and are symmetric and continuous.

It should be noted that since 1978 till now the instability of the solutions of cer-
tain scalar differential equations of the fifth order without and with delay and vector
differential equations of the fifth order without delay was discussed in the literature.
For a comprehensive treatment of the subject, we refer the readers to the papers of
Ezeilo [2], Sadek [5], Sun and Hou [6], Tunç ([7]-[14]), Tunç and Erdogan [15], Tunç
and Karta [16], Tunç and Şevli [17] and the references cited in these sources. How-
ever, a review to date of the literature indicates that the instability of solutions of
vector differential equations of the fifth order with delay has not been investigated.
This paper is the first known publication regarding the instability of solutions for the
nonlinear vector differential equations of the fifth order with a deviating argument.
The motivation of this paper comes from the above papers done on scalar differential
equations of the fifth order without and with delay and the vector differential equa-
tions of the fifth order without delay. Our aim is to achieve the results established in
Sadek [[5], Theorem 3] to Eq. (1.2). By this work, we improve the results of Sadek
[[5], Theorem 3] to a vector differential equation of the fifth order with delay. Based
on Krasovskii’s criterions [3], we prove our main result, and an example is also pro-
vided to illustrate the feasibility of the proposed result. The result to be obtained is
new and different from that in the papers mentioned above.

Note that the instability criteria of Krasovskii [3] can be summarized as the fol-
lowing: According to these criteria, it is necessary to show here that there exists a
Lyapunov- Krasovskii functional V (.) ≡ V (X,Y, Z,W,U) which has Krasovskii prop-
erties, say (K1), (K2) and (K3) :
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(K1) In every neighborhood of (0, 0, 0, 0, 0), there exists a point (ξ1, ..., ξ5) such
that V (ξ1, ..., ξ5) > 0,

(K2) the time derivative d
dtV (.) along solution paths of (1.3) is positive semi-

definite,
(K3) the only solution (X,Y, Z,W,U) = (X(t), Y (t), Z(t),W (t), U(t)) of (1.3)

which satisfies d
dtV (.) = 0, (t ≥ 0), is the trivial solution (0, 0, 0, 0, 0).

The symbol 〈X,Y 〉 corresponding to any pair X, Y in <n stands for the usual

scalar product
n∑
i=1

xiyi, that is, 〈X,Y 〉 =
n∑
i=1

xiyi; thus 〈X,X〉 = ‖X‖2 , and λi(Ω),

(i = 1, 2, ..., n), are the eigenvalues of the real symmetric n×n - matrix Ω. The matrix
Ω is said to be negative-definite, when 〈ΩX,X〉 ≤ 0 for all nonzero X in <n.

2. Main results

Before introduction of the main result, we need the following results.

Lemma 2.1. (Bellman [1]). Let A be a real symmetric n× n -matrix and

a′ ≥ λi(A) ≥ a > 0, (i = 1, 2, ..., n),

where a′ and a are constants.
Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′
2

〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

The following theorem, due to the Russian mathematician N. G. Četaev’s (LaSalle
and Lefschetz [4]).

Theorem 2.1. (Instability Theorem of Četaev’s). Let Ω be a neighborhood of the
origin. Let there be given a function V (x) and region Ω1 in Ω with the following
properties:

(i) V (x) has continuous first partial derivatives in Ω1.
(ii) V (x) and V̇ (x) are positive in Ω1.
(iii) At the boundary points of Ω1 inside Ω, V (x) = 0.
(iv) The origin is a boundary point of Ω1.

Under these conditions the origin is unstable.

Let r ≥ 0 be given, and let C = C([−r, 0], <n) with

‖φ‖ = max
−r≤s≤0

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by
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CH = {φ ∈ C : ‖φ‖ < H}.

If x : [−r, A) → <n is continuous, 0 < A ≤ ∞, then, for each t in [0, A), xt in C
is defined by

xt(s) = x(t+ s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous delay differ-
ential system with finite delay

ẋ = F (xt), F (0) = 0, xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

where F : G → <n is continuous and maps closed and bounded sets into bounded
sets. It follows from these conditions on F that each initial value problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This solution will
be denoted by x(φ)(.) so that x0(φ) = φ.

Definition 2.2. The zero solution, x = 0, of ẋ = F (xt) is stable if for each ε > 0
there exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for all t ≥ 0.
The zero solution is said to be unstable if it is not stable.

The main result of this paper is the following theorem.

Theorem 2.2. In addition to the basic assumptions imposed on Ψ, Φ, H and F that
appear in Eq. (1.2), we assume that there exist positive constants a3, a4 and a5 such
that the following conditions hold:

Ψ(Z), Φ(X,Y, Z), JH(Y ) and JF (X) are symmetric,

F (0) = 0, F (X) 6= 0, (X 6= 0), λi(JF (X)) ≤ −a5
H(0) = 0, H(Y ) 6= 0, (Y 6= 0), |λi(JH(Y ))| ≤ a4

and
λi(Φ(X,Y, Z)) ≥ a3 for all X ∈ <n.

If

τ < min{ 2√
n
,

2a3
2
√
na4 +

√
na5
},

then the zero solution of Eq. (1.2) is unstable.

Remark 2.3. It should be noted that there is no sign restriction on eigenvalues of Ψ,
and it is clear that our assumptions have a very simple form and the applicability of
them can be easily verified.
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Proof. We define a Lyapunov-Krasovskii functional

V (.) = V (X(t), Y (t), Z(t),W (t), U(t)) :

V (.) =− 〈Y, F (X)〉 − 〈Z,U〉+
1

2
〈W,W 〉

−
1∫

0

〈H(σY ), Y 〉 dσ −
1∫

0

〈σΨ(σZ)Z,Z〉 dσ

− λ
0∫
−τ

t∫
t+s

‖Y (θ)‖2 dθds− µ
0∫
−τ

t∫
t+s

‖Z(θ)‖2 dθds,

where λ and µ are certain positive constants; the constants λ and µ will be determined
later in the proof.

It is clear that V (0, 0, 0, 0, 0) = 0 and

V (0, 0, 0, ε, 0) =
1

2
〈ε, ε〉 =

1

2
‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ <n, which verifies the property (P1) of Krasovskii [3].

Using a basic calculation,the time derivative of V (.) along solutions of (1.3) results
in

d

dt
V (.) = − 〈Y, JF (X)Y 〉+ 〈Ψ(Z)W,Z〉+ 〈Z,Φ(X,Y, Z)Z〉

+ 〈H(Y ), Z〉+ <

t∫
t−τ

JF (X(s))Y (s)ds, Z >

+ <

t∫
t−τ

JH(Y (s))Z(s)ds, Z >

− d

dt

1∫
0

〈H(σY ), Y 〉 dσ − d

dt

1∫
0

〈σΨ(σZ)Z,Z〉 dσ

− λ
d

dt

0∫
−τ

t∫
t+s

‖Y (θ)‖2 dθds− µ d
dt

0∫
−τ

t∫
t+s

‖Z(θ)‖2 dθds.



126 C. Tunç

It can be easily seen that

d

dt

1∫
0

〈H(σY ), Y 〉 dσ = 〈H(Y ), Z〉 ,

d

dt

1∫
0

〈σΨ(σZ)Z,Z〉 dσ = 〈Ψ(Z)W,Z〉 ,

d

dt

0∫
−τ

t∫
t+s

‖Y (θ)‖2 dθds = ‖Y ‖2 τ −
t∫

t−τ

‖Y (θ)‖2 dθ,

d

dt

0∫
−τ

t∫
t+s

‖Z(θ)‖2 dθds = ‖Z‖2 τ −
t∫

t−τ

‖Z(θ)‖2 dθ,

<

t∫
t−τ

JF (X(s))Y (s)ds, Z > ≥ −‖Z‖

∥∥∥∥∥∥
t∫

t−τ

JF (X(s))Y (s)ds

∥∥∥∥∥∥
≥ −
√
na5 ‖Z‖

∥∥∥∥∥∥
t∫

t−τ

Y (s)ds

∥∥∥∥∥∥
≥ −
√
na5 ‖Z‖

t∫
t−τ

‖Y (s)‖ ds

≥ −1

2

√
na5τ ‖Z‖2 −

1

2

√
na5

t∫
t−τ

‖Y (s)‖2 ds

and

<

t∫
t−τ

JH(Y (s))Z(s)ds, Z > ≥ −‖Z‖

∥∥∥∥∥∥
t∫

t−τ

JH(Y (s))Z(s)ds

∥∥∥∥∥∥
≥ −

√
na4 ‖Z‖

∥∥∥∥∥∥
t∫

t−τ

Z(s)ds

∥∥∥∥∥∥
≥ −

√
na4 ‖Z‖

t∫
t−τ

‖Z(s)‖ ds

≥ −1

2

√
na4τ ‖Z‖2 −

1

2

√
na4

t∫
t−τ

‖Z(s)‖2 ds
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so that

d

dt
V (.) ≥ −〈Y, JF (X)Y 〉+ 〈Z,Φ(X,Y, Z)Z〉

−1

2

√
na5τ 〈Z,Z〉 −

1

2

√
na5

t∫
t−τ

‖Y (s)‖2 ds

−1

2

√
na4τ 〈Z,Z〉 −

1

2

√
na4

t∫
t−τ

‖Z(s)‖2 ds

−λτ 〈Y, Y 〉+ λ

t∫
t−τ

‖Y (θ)‖2 dθ

−µτ 〈Z,Z〉+ µ

t∫
t−τ

‖Z(θ)‖2 dθ

≥ (a5 − λτ) ‖Y ‖2

+{a3 − (µ+
1

2

√
na4 +

1

2

√
na5)τ} ‖Z‖2

+ (λ− 1

2

√
na5)

t∫
t−τ

‖Y (s)‖2 ds

+ (µ− 1

2

√
na4)

t∫
t−τ

‖Z(s)‖2 ds.

Let

λ =
1

2

√
na5

and

µ =
1

2

√
na4

so that

d

dt
V (.) ≥ {(a5 −

1

2

√
na5)τ} ‖Y ‖2 + {(a3 − (

√
na4 +

1

2

√
na5)τ} ‖Z‖2 .

If τ < min{ 2√
n
, 2a3
2
√
na4+

√
na5
}, then we have for some positive constants k1 and k2

that

d

dt
V (.) ≥ k1 ‖Y ‖2 + k2 ‖Z‖2 ≥ 0,

which verifies the property (P2) of Krasovskii [3].
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On the other hand, it follows that

d

dt
V (.) = 0⇔ Y = Ẋ = 0, Z = Ẏ = 0,W = Ż = 0, U = Ẇ = 0 for all t ≥ 0.

Hence
X = ξ, Y = Z = W = U = 0,

where ξ is a constant vector.
Substituting foregoing estimates in the system (1.3), we get that F (ξ) = 0, which

necessarily implies that ξ = 0 since F (0) = 0. Thus, we have

X = Y = Z = W = U = 0 for all t ≥ 0.

Hence, the property (P3) of Krasovskii [3] holds
The proof of Theorem 2.2 is complete.

Example 2.4. In a special case of Eq. (1.2), for n = 2, we choose

Ψ(Z) =

[
z1 1
1 z2

]
,

Φ(X,Y, Z) =

[
9 + 1

1+x2
1+y

2
1+z

2
1

0

0 9 + 1
1+x2

2+y
2
2+z

2
2

]
,

H(Y (t− τ)) =

[
4y1(t− τ)
4y2(t− τ)

]
and

F (X(t− τ)) =

[
−3x1(t− τ)
−3x2(t− τ)

]
.

Then, the matrix Ψ(Z) is symmetric, and, by an easy calculation, we obtain

λ1(Φ(X,Y, Z)) = 9 +
1

1 + x21 + y21 + z21
,

λ2(Φ(X,Y, Z)) = 9 +
1

1 + x22 + y22 + z22
,

JH(Y ) =

[
4 0
0 4

]
and

JF (X) =

[
−3 0
0 −3

]
so that

λi(Φ(X,Y, Z)) ≥ 9 = a3 > 0,

|λi(JH(Y ))| = 4 = a4
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and
λi(JF (X)) ≤ −3 = −a5, (i = 1, 2).

Thus, if

τ < min{ 2√
2
,

8

8
√

2 + 3
√

2
},

then all the assumptions of Theorem 2.2 hold.
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[14] Tunç, C., Instability of solutions for nonlinear functional differential equations
of fifth order with n-deviating arguments, Bul. Acad. Ştiinte Repub. Mold. Mat.
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