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1 Introduction

Let M̃ denote the class of functions which are analytic in D = D(1), where

D(r) = {z ∈ C : 0 < |z| < r} (r ∈ (0, 1])

and let Mk (k ∈ N0 := {0, 1, 2, ...}) denote the class of functions f ∈ M̃ of the form

f(z) =
1

z
+

∞∑
n=k

anz
n (z ∈ D). (1)

Moreover, letM :=M0. Also, by Tθ (θ ∈ R) we denote the class of functions f ∈M
of the form

f(z) =
1

z
+ eiθ

∞∑
n=0

|an|zn (z ∈ D) . (2)

The class Tθ is called the class of meromorphic functions with fixed argument of
coefficients. For θ = π we obtain the class Tπ of meromorphic functions with negative
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coefficients. Classes of functions with fixed argument of coefficients were considered
in [1, 2, 3, 4].

A function f ∈M is said to be convex in D(r) if

Re

(
1 +

zf ′′(z)

f ′(z)

)
< 0 (z ∈ D(r)).

A function f ∈M is said to be starlike in D(r) if

Re
zf ′(z)

f(z)
< 0 (z ∈ D(r)). (3)

Let B be a subclass of the class M. We define the radius of starlikeness of order
α and the radius of convexity of order α for the class B by

R∗α(B) = inf
f∈B
{sup {r ∈ (0, 1] : f is starlike in D(r)}} ,

Rcα(B) = inf
f∈B
{sup {r ∈ (0, 1] : f is convex in D(r)}} ,

respectively.
Let functions f, F be analytic in U := D∪{0} . We say that f is subordinate to

F , and write f(z) ≺ F (z) (or simply f ≺ F ), if and only if there exists a function ω
analytic in U , |ω(z)| ≤ |z| (z ∈ U) , such that

f(z) = F (ω(z)) (z ∈ U) .

In particular, if F is univalent in U , we have the following equivalence:

f(z) ≺ F (z)⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

For functions f, g ∈ M̃ of the form

f(z) =

∞∑
n=−1

anz
n and g(z) =

∞∑
n=−1

bnz
n,

by f ∗ g we denote the Hadamard product (or convolution) of f and g, defined by

(f ∗ g) (z) =

∞∑
n=−1

anbnz
n (z ∈ D) .

Let ϕ ∈Mk be a given function of the form

ϕ(z) =
1

z
+

∞∑
n=k

αnz
n (z ∈ D; αn > 0, n = k, k + 1, ...). (4)

Assume that A,B are real parameters, −1 ≤ A < B ≤ 1, (cos θ < 0 or B 6= 1).
By Mk (ϕ;A,B) we denote the class of functions f ∈Mk such that

z (ϕ ∗ f) (z) ≺ 1 +Az

1 +Bz
. (5)
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Now, we define the classes of functions with fixed argument of coefficients related
to the class Mk (ϕ;A,B). Let us denote

Mk
θ (ϕ;A,B) := Tθ ∩Mk (ϕ;A,B) , M (ϕ;A,B) :=M0 (ϕ;A,B) .

In the present paper we obtain coefficient estimates, distortion theorems, inte-
gral means inequalities, and the radii of convexity and starlikeness for the class
Mk

θ (ϕ;A,B). We also derive convolution properties for the class of functions.

2 Coefficient estimates

Before stating and proving coefficient estimates in the class M (ϕ;A,B) we need the
following lemma.

Lemma 1 [6] Let f be a function of the form

f(z) =

∞∑
n=0

anz
n,

which is analytic in D. If f ≺ g and g is convex univalent in U , then

|an| ≤ 1 (n ∈ N) .

Theorem 1 If a function f of the form (1) belongs to the class M (ϕ;A,B), then

|an| ≤
B −A
αn

(n = 0, 1, . . .), (6)

The result is sharp.

Proof. Let a function f of the form (1) belong to the class M (ϕ;A,B) and let us
put

g(z) =
z (ϕ ∗ f) (z)− 1

A−B
and h(z) =

z

1 +Bz
.

Then, by (5), we have g ≺ h. Since the function g is given by

g(z) =

∞∑
n=0

αn
A−B

anz
n+1

and the function h is convex univalent in U , by Lemma 1 we obtain

αn
B −A

|an| ≤ 1 (n ∈ N0). (7)

Thus we have (6). The Equality in (7) holds for the functions gn of the form

gn(z) = h(zn+1) = zn+1 +

∞∑
j=n+2

bjz
j (n = 0, 1, . . .),
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for some bj (j = n+ 2, n+ 3, . . .). Consequently, the equality in (6) holds true for the
functions fn of the form

fn(z) =
1

z
+
A−B
αn

zn +

∞∑
j=n+1

A−B
αj

bj+1z
j (n = 0, 1, . . .).

Theorem 2 If a function f of the form (2) belongs to the class Mk
θ (ϕ;A,B), then

∞∑
n=k

αn |an| ≤ δ(θ;A,B), (8)

where

δ(θ;A,B) :=
B −A√

1−B2 sin2 θ −B cos θ
. (9)

Proof. Let a function f belong to the class Mk
θ (ϕ;A,B) . Then, by (5) and the

definition of subordination, we have

z (ϕ ∗ f) (z) =
1 +Aω(z)

1 +Bω(z)
,

where ω(0) = 0 and |ω(z)| < 1 for z ∈ U . Thus we obtain

|z (ϕ ∗ f) (z)− 1| < |Bz (ϕ ∗ f) (z)−A| (z ∈ D).

Hence, by (2), we have∣∣∣∣∣
∞∑
n=k

αn|an|zn+1

∣∣∣∣∣ <
∣∣∣∣∣B −A+Beiθ

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣ (z ∈ D). (10)

Putting z = r (0 ≤ r < 1), we find that

|w| < |B −A+Bweiθ|, (11)

where, for convenience,

w =

∞∑
n=k

αn|an|rn+1.

Since w is a real number, by (11) we have

(1−B2)w2 − [2B (B −A) cos θ]w − (B −A)
2
< 0.

Solving this inequality with respect to w, we obtain

∞∑
n=k

αn|an|rn+1 < δ(θ;A,B),

which, upon letting r → 1−, readily yields the assertion (8) of Theorem 1.
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Theorem 3 A function f of the form (2) belongs to the class Mk
π (ϕ;A,B) if and

only if
∞∑
n=k

αn |an| ≤
B −A
1 +B

. (12)

Proof. By virtue of Theorem 1, we only need to show that the condition (12) is
the sufficient condition. Let a function f of the form (2) satisfy the condition (12).
Then, in view of (10), it is sufficient to prove that∣∣∣∣∣

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣−
∣∣∣∣∣B −A−B

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣ < 0 (z ∈ D).

Indeed, letting |z| = r (0 < r < 1), we have∣∣∣∣∣
∞∑
n=k

αn|an|zn+1

∣∣∣∣∣−
∣∣∣∣∣B −A−B

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣
≤

( ∞∑
n=k

αn|an|rn+1

)
−

(
B −A−B

∞∑
n=k

αn|an|rn+1

)

< (1 +B)

∞∑
n=k

αn|an| − (B −A) ≤ 0,

which implies that f ∈Mk
π (ϕ;A,B) .

Theorem 2 readily yields

Corollary 1 If a function f of the form (2) belongs to the class Mk
θ (ϕ;A,B) , then

|an| ≤
δ(θ;A,B)

αn
(n = k, k + 1, . . .), (13)

where δ(θ;A,B) is defined by (9). The result is sharp for θ = π. Then the functions
fn of the form

fn(z) =
1

z
− B −A

(1 +B)αn
zn (z ∈ D; n = k, k + 1, . . .) (14)

are the extremal functions.

3 Distortion theorems

From Theorem 2 we have the following lemma.

Lemma 2 Let a function f of the form (2) belong to the class Mk
θ (ϕ;A,B) . If the

sequence {αn} defined by (4) satisfies the inequality

αk ≤ αn (n = k, k + 1, . . .) , (15)
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then
∞∑
n=k

|an| ≤
δ(θ;A,B)

αk
.

Moreover, if

nαk ≤ αn (k ≥ 1, n = k, k + 1, . . .) , (16)

then
∞∑
n=k

n |an| ≤
kδ(θ;A,B)

αk
.

Theorem 4 Let a function f belong to the class Mk
θ (ϕ;A,B) . If the sequence {αn}

defined by (4) satisfies (15), then

1

r
− δ(θ;A,B)

αk
rk ≤ |f(z)| ≤ 1

r
+
δ(θ;A,B)

αk
rk (|z| = r < 1) . (17)

Moreover, if (16) holds, then

1

r2
− kδ(θ;A,B)

αk
rk−1 ≤ |f ′(z)| ≤ 1

r2
+
kδ(θ;A,B)

αk
rk−1 (|z| = r < 1) . (18)

The result is sharp for θ = π, with the extremal function fk of the form (14).

Proof. Let a function f of the form (2) belong to the classMk
θ (ϕ;A,B) , |z| = r <

1. Since

|f(z)| =

∣∣∣∣∣1z + eiθ
∞∑
n=k

anz
n

∣∣∣∣∣ ≤ 1

r
+

∞∑
n=k

|an| rn ≤
1

r
+

∞∑
n=k

|an|

and

|f(z)| =

∣∣∣∣∣1z + eiθ
∞∑
n=k

anz
n

∣∣∣∣∣ ≥ 1

r
−
∞∑
n=k

|an| rn ≥
1

r
−
∞∑
n=k

|an| ,

then by Lemma 2 we have (17). Analogously we prove (18).

4 Integral means inequalities

Due to Littlewood [7] we obtain integral means inequalities for the functions from the
class Mk

θ (ϕ;A,B) .

Lemma 3 [7]. Let function f , g be analytic in U . If f ≺ g, then

2π∫
0

∣∣f(reit)
∣∣λ dt ≤

2π∫
0

∣∣g(reit)
∣∣λ dt (0 < r < 1, λ > 0) . (19)
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Silverman [8] found that the function

g(z) = z − z2

2
(z ∈ D) ,

is often extremal over the family of functions with negative coefficients. He applied
this function to resolve integral means inequality, conjectured in [9] and settled in
[10], that (19) holds true for all functions f with negative coefficients. In [10] he also
proved his conjecture for some subclasses of Tπ.

Applying Lemma 3 and Theorem 2 we prove the following result.

Theorem 5 Let the sequence {αn} defined by (4) satisfy the inequality (15). If f ∈
M0

θ (ϕ;A,B) , then

2π∫
0

∣∣f(reit)
∣∣λ dt ≤

2π∫
0

∣∣g(reit)
∣∣λ dt (0 < r < 1, λ > 0) , (20)

where

g(z) =
1

z
+ eiθ

δ(θ;A,B)

α0
(z ∈ D).

Proof. For function f of the form (2), the inequality (20) is equivalent to the
following:

2π∫
0

∣∣∣∣∣1 + eiθ
∞∑
n=0

|an|zn+1

∣∣∣∣∣
λ

dt ≤
2π∫
0

∣∣∣∣1 + eiθ
δ(θ;A,B)

α0
z

∣∣∣∣λ dt.

By Lemma 3, it suffices to show that

∞∑
n=0

|an| zn+1 ≺ δ(θ;A,B)

α0
z. (21)

Setting

w(z) =

∞∑
n=0

α0

δ(θ;A,B)
anz

n+1 (z ∈ D)

and using (15) and Theorem 2 we obtain

|w(z)| =

∣∣∣∣∣
∞∑
n=0

α0

δ(θ;A,B)
an z

n+1

∣∣∣∣∣ ≤ |z|
∞∑
n=0

αn
δ(θ;A,B)

|an| ≤ |z| (z ∈ D) .

Since
∞∑
n=0

anz
n+1 =

δ(θ;A,B)

α0
w(z) (z ∈ D) ,

by definition od subordination we have (21) and this completes the proof.



66 J. Dziok, J. Sokó l, J. Stankiewicz

5 The radii of convexity and starlikeness

Theorem 6 If a function f belongs to the class Mk
θ (ϕ;A,B), k ≥ 1, then f is

starlike in the disk D(r∗), where

r∗ := inf
n≥k

(
αn

nδ(θ,A,B)

) 1
n+1

(22)

and δ(θ,A,B), {αn} are defined by (9) and (4), respectively. For θ = π, the result is
sharp, that is

R∗
(
Mk

π (ϕ;A,B)
)

= r∗.

Proof. A function f ∈Mk of the form (2) is starlike in the disk D(r) if and only if
it satisfies the condition (3) or if∣∣∣∣zf ′(z) + f(z)

zf ′(z)− f(z)

∣∣∣∣ < 1 (z ∈ D (r)) . (23)

Since

∣∣∣∣zf ′(z) + f(z)

zf ′(z)− f(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
eiθ

∞∑
n=k

(n+ 1) |an| zn

2
z − eiθ

∞∑
n=k

(n− 1) |an| zn

∣∣∣∣∣∣∣∣ ≤
∞∑
n=k

(n+ 1) |an| |z|n+1

2−
∞∑
n=k

(n− 1) |an| |z|n+1
,

putting |z| = r the condition (23) be true if

∞∑
n=k

n |an| rn+1 ≤ 1. (24)

By Theorem 2, we have
∞∑
n=k

αn
δ(θ,A,B)

|an| ≤ 1,

Thus, the condition (24) be true if

nrn+1 ≤ αn
δ(θ,A,B)

(n = k, k + 1, ...),

that is, if

r ≤
(

αn
nδ(θ,A,B)

) 1
n+1

(n = k, k + 1, ...).

It follows that each function f ∈Mk
θ (ϕ;A,B) is starlike in the disk D (r∗), where r∗

is defined by (22). For θ = π the functions fn of the form (14) are extremal functions.
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Theorem 7 If a function f belongs to the class Mk
θ (ϕ;A,B), then f is convex in

the disk D(rc), where

rc := inf
n≥k

(
αn

n2δ(θ,A,B)

) 1
n+1

and δ(θ,A,B), {αn} are defined by (9) and (4), respectively. For θ = π, the result is
sharp, that is,

Rc
(
Mk

π (ϕ;A,B)
)

= rc.

Proof. The proof is analogous to that of Theorem 4, and we omit the details.

6 Cnonvolution properties

Let

f(z) =
1

z
+eiα

∞∑
n=k

|an|zn, g(z) =
1

z
+ eiβ

∞∑
n=k

|bn|zn (z ∈ D) . (25)

We define modified Hadamard product for the functions f, g as follows:

f ~ g(z) =
1

z
−
∞∑
n=k

|an||bn|zn (z ∈ D) .

Theorem 8 Let f ∈ Mk
α (ϕ;A,B) and g ∈ Mk

β (ψ;C,D) . Then f ~ g ∈
Mk

π (ϕ ∗ ψ;E,F ) , whenever

δ(π,E, F ) ≥ δ(α,A,B)δ(β,C,D). (26)

Proof. Let

ψ(z) =
1

z
+

∞∑
n=k

βnz
n (z ∈ D; βn > 0, n = k, k + 1, ...)

and let functions f, g of the form (25) belong to the classes Mk
α (ϕ;A,B) and

Mk
β (ψ;C,D) , respectively. From Theorem 2 we have

∞∑
n=k

αn
δ(α;A,B)

|an| ≤ 1,

∞∑
n=k

βn
δ(β;C,D)

|bn| ≤ 1.

Thus, by (26) we obtain

∞∑
n=k

αnβn
δ(π,E, F )

|anbn| ≤
∞∑
n=k

αnβn
δ(α;A,B)δ(β;C,D)

|an| |bn|

≤
∞∑
n=k

αn
δ(α;A,B)

|an|
∞∑
n=k

βn
δ(β;C,D)

|bn| ≤ 1.

Applying Theorem 3 we get f ~ g ∈Mk
π (ϕ ∗ ψ;E,F ) .
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Theorem 9 Let the sequence {αn} defined by (4) satisfy the inequalities (15). If
f, g ∈Mk

θ (ϕ;A,B) , then f ~ g ∈Mk
π (ϕ;C,D) , whenever

(D − C)α0 ≥ (1 +D) [δ(θ,A,B)]
2
. (27)

Proof. Let a functions f, g of the form (25) belong to the classMk
α (ϕ;A,B). Then

by Theorem 2 we have

∞∑
n=k

αn
δ(α;A,B)

|an| ≤ 1,

∞∑
n=k

αn
δ(α;A,B)

|bn| ≤ 1.

Thus, by the Cauchy-Schwarz inequality we obtain

∞∑
n=k

αn
δ(θ,A,B)

√
|anbn| ≤ 1 . (28)

We have to prove that
∞∑
k=2

αn
1 +D

D − C
|anbn| ≤ 1 .

Therefore, by (28) it is sufficient to show that

1 +D

D − C
|anbn| ≤

1

δ(θ,A,B)

√
|anbn| (n ≥ 2)

or equivalently √
|anbn| ≤

D − C
(1 +D) δ(θ,A,B)

(n ≥ 2).

From (28) we have √
|anbn| ≤

δ(θ,A,B)

αn
(n ≥ 2).

Consequently, we need only to prove that

D − C
(1 +D) δ(θ,A,B)

≥ δ(θ,A,B)

αn
(n ≥ 2),

and this inequality follows from (27) and (15).
We note that for functions f ∈ Mk

α (ϕ;A,B) and g ∈ Mk
π−α (ψ;C,D) we have

f ∗ g = f ~ g. Thus from Theorem 8 obtain following corollary.

Corollary 2 If f ∈ Mk
α (ϕ;A,B) and g ∈ Mk

π−α (ψ;C,D) , then f ∗ g ∈
Mk

π (ϕ ∗ ψ;E,F ) , whenever

δ(π,E, F ) ≥ δ(α,A,B)δ(π − α,C,D).

Putting θ = π in Theorem 9 we obtain following corollary.
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Corollary 3 Let the sequence {αn} defined by (4) satisfy (15). If f, g ∈Mk
π (ϕ;A,B) ,

then f ~ g ∈Mk
π (ϕ;C,D) , whenever

(D − C) (1 +B)
2
α0 ≥ (1 +D) (B −A)

2
.

Putting C = A and D = B in Corollary 3 we obtain following corollary.

Corollary 4 Let the sequence {αn} defined by (4) satisfy (15). If f, g ∈Mk
π (ϕ;A,B) ,

then f ~ g ∈Mk
π (ϕ;A,B) , whenever

α0 ≥
B −A
1 +B

.

Since for α = β = π, E = A and F = B the condition (26) is true, then from
Theorem 8 we have following corollary.

Corollary 5 If f ∈Mk
π (ϕ;A,B) and g ∈Mk

π (ψ;C,D) , then

f ~ g ∈Mk
π (ϕ ∗ ψ;A,B) ∩Mk

π (ϕ ∗ ψ;C,D) .
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