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and Darbo’s fixed point theorem to establish the proof of our main result.

AMS Subject Classification: 45G10, 45M99, 47H09.
Keywords and Phrases: Cubic integral equation; Darbo’s fixed point theorem; Mono-
tonicity measure of noncompactness.

1. Introduction

Cubic integral equations have several useful applications in modeling numerous prob-
lems and events of the real world (cf. [3, 8, 9, 12, 13, 18, 19]).

In this paper we consider the cubic Urysohn integral equation with linear pertur-
bation of second kind

x(τ) = φ(τ) + ϕ(τ, x(τ)) + x2(τ)

∫ 1

0

u(τ, s, (Λx)(s)) ds, τ ∈ I = [0, 1]. (1.1)

In the above equation, we consider φ : I → R, ϕ : I × R→ R, u : I × I × R→ R are
given functions and Λ : C(I)→ C(I) is an operator verifies special assumption which
will state in Section 3.

Eq.(1.1) is of interest since it contains many includes several integral equations
studied earlier as special cases, see [1, 2, 6, 7, 10, 11, 14, 15, 16, 20, 21, 22] and
references therein. By using the measure of noncompactness related to monotonicity
associated with fixed point theorem due to Darbo, we show that Eq.(1.1) has at least
one solution in C(I) which is nondecreasing on the interval I.
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2. Auxiliary Facts and Results

In this section, we present some definitions and results which we will use further on.
Let (E, ‖·‖) be a real Banach space with zero element 0. Let B(x, r) be the closed

ball centered at x with radius r. We denote by Br the closed ball B(0, r). Next, let
X be a subset of E, we denote by X and ConvX the closure and convex closure of X,
respectively. We use the symbols λX and X + Y for the usual algebraic operations
on the sets. Moreover, the symbol ME stands for the family of all nonempty and
bounded subsets of E and the symbol NE stands for its subfamily consisting of all
relatively compact subsets.

Now, we state the definition of a measure of noncompactness [4]:

Definition 2.1. A function µ : ME → R+ is called a measure of noncompactness in
E if it verifies the following assumptions:

(1) The family kerµ 6= ∅ and kerµ ⊂ NE , where kerµ = {X ∈ME : µ(X) = 0}.

(2) µ(X) ≤ µ(Y ), if X ⊂ Y .

(3) µ(X) = µ(X) and µ(ConvX) = µ(X).

(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), 0 ≤ λ ≤ 1.

(5) If Xn ∈ ME , Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, 3, ... and lim
n→∞

µ(Xn) = 0,

then ∩∞n=1Xn 6= ∅.

Notice that kerµ is said to be the kernel of the measure of noncompactness µ.
In the following, we will work in the Banach space C(I) of all real functions defined

and continuous on I = [0, 1] equipped with the standard norm ‖x‖ = max{|x(τ)| :
τ ∈ I}. We recall the measure of noncompactness in C(I) which we will need in the
next section (see [5]).

Let ∅ 6= X ⊂ C(I). For x ∈ X and ε ≥ 0 we denote by ω(x, ε) the modulus of
continuity of the function x as follows

ω(x, ε) = sup{|x(τ)− x(t)| : τ, t ∈ I, |τ − t| ≤ ε}.

Next, we put ω(X, ε) = sup{ω(x, ε) : x ∈ X} and ω0(X) = lim
ε→0

ω(X, ε). Moreover,

we define
d(x) = sup{|x(τ)− x(t)| − [x(τ)− x(t)] : τ, t ∈ I, τ ≥ t}

and
d(X) = sup{d(x) : x ∈ X}.

Notice that d(X) = 0 if and only if all functions belonging to X are nondecreasing
on I.

Finally, we define the function µ on the family MC(I) as follows

µ(X) = ω0(X) + d(X).
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Notice that the function µ is a measure of noncompactness in C(I) [5].
We present a fixed point theorem due to Darbo [17] which we will need in the

proof of our main result. First, we make use of the following definition.

Definition 2.2. Let ∅ 6= M be a subset of a Banach space E and let P : M → E
be a continuous mapping which maps bounded sets onto bounded sets. The operator
P satisfies the Darbo condition (with a constant κ ≥ 0) with respect to a measure of
noncompactness µ if for any bounded subset X of M we have

µ(PX) ≤ κµ(X).

If P verifies the Darbo condition with κ < 1 then it is a contraction operator with
respect to µ.

Theorem 2.3. Let ∅ 6= Ω be a closed, bounded and convex subset of the space E and
let P : Ω→ Ω be a contraction mapping with respect to the measure of noncompactness
µ.
Then P has a fixed point in the set Ω.

Notice that the assumptions of the above theorem gives us that the set FixP of
all fixed points of P belongs to Ω is an element of kerµ [4].

3. The Main Result

We consider Eq.(1.1) and assume that the following assumptions are verified:

(a1) The function φ : I → R is continuous, nonnegative and nondecreasing on I.

(a2) The function ϕ : I × R→ R is continuous, ϕ : I × R+ → R+ and

∃ c ≥ 0 : |ϕ(τ, x1)− ϕ(τ, x2)| ≤ c|x1 − x2| ∀ (x1, x2) ∈ R2 & τ ∈ I.

(a3) The superposition operator Φ generated by the function ϕ satisfies for any
nonnegative function x the condition d(Φx) ≤ cd(x), where c is the same c
appears in assumption (a2).

(a4) The function u : I × I × R → R is a continuous, u : I × I × R+ → R+ and for
arbitrary fixed t ∈ I and x ∈ R the function τ → u(τ, t, x) is nondecreasing on I.
Moreover,

∃ Ψ : R+ → R+(nondecreasing) : |u(τ, t, x)| ≤ Ψ(|x|) ∀ (τ, t) ∈ I2 & x ∈ R.

(a5) The operator Λ : C(I)→ C(I) is continuous and

∃ ψ : R+ → R+(nondecreasing) : |(Λx)(τ)| ≤ ψ(‖x‖) for any τ ∈ I, x ∈ C(I).

Moreover, for every nonnegative function x ∈ C(I), the function Λx is nonneg-
ative and nondecreasing on I.
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(a6) The inequality
‖φ‖+ cr + ϕ∗ + r2Ψ(ψ(r)) ≤ r (3.1)

has a positive solution r0 such that c+2r0Ψ(ψ(r0)) < 1, where ϕ∗= max
0≤τ≤1

ϕ(τ, 0).

Under the above assumptions, we state our main result as follows.

Theorem 3.1. Let the assumptions (a1) − (a6) be verified, then the cubic Urysohn
integral equation (1.1) has at least one solution x ∈ C(I) which is nondecreasing on I.

Proof. Let F be an operator defined on C(I) by

(Fx)(τ) = φ(τ) + ϕ(τ, x(τ)) + x2(τ)(Ux)(t), (3.2)

where U is the Urysohn integral operator

(Ux)(τ) =

∫ 1

0

u(τ, t, (Λx)(t)) dt. (3.3)

For better readability, we will write the proof in seven steps.

Step 1: F maps the space C(I) into itself.

Notice that for a given x ∈ C(I), according to assumptions (a1) − (a5), we have
Fx ∈ C(I). Therefore, the operator F maps C(I) into itself.

Step 2: F maps the ball Br0 into itself.

For all τ ∈ I, we have

|(Fx)(τ)| ≤
∣∣∣∣φ(τ) + ϕ(τ, x(τ)) + x2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt

∣∣∣∣
≤ |φ(τ)|+ |ϕ(τ, x(τ))− ϕ(τ, 0)|+ |ϕ(τ, 0)|

+|x2(τ)|
∫ 1

0

|u(τ, t, (Λx)(t))| dt

≤ ‖φ‖+ c‖x‖+ ϕ∗ + ‖x‖2Ψ(ψ(‖x‖))
∫ 1

0

ds

= ‖φ‖+ c‖x‖+ ϕ∗ + ‖x‖2Ψ(ψ(‖x‖)).

From the above estimate, we get

‖Fx‖ ≤ ‖φ‖+ c‖x‖+ ϕ∗ + ‖x‖2Ψ(ψ(‖x‖)).

Therefore, if we have ‖x‖ ≤ r0, we obtain

‖Fx‖ ≤ ‖φ‖+ cr0 + ϕ∗ + r20Ψ(ψ(r0)) ≤ r0,

in view of the assumption (a6). Consequently, the operator F maps the ball Br0 into
itself.
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Further, let B+
r0 be the subset of Br0 given by

B+
r0 = {x ∈ Br0 : x(τ) ≥ 0, for τ ∈ I}.

Notice that, the set ∅ 6= B+
r0 is closed, bounded and convex.

Step 3: F maps continuously the ball B+
r0 into itself.

In view of the above facts about B+
r0 and assumptions (a1)− (a4), we infer that F

maps the set B+
r0 into itself.

Step 4: The operator F is continuous on B+
r0 .

To establish this, let us fix arbitrarily ε > 0 and y ∈ B+
r0 . By assumption (a4),

we can find δ > 0 such that for arbitrary x ∈ B+
r0 with ‖x − y‖ ≤ δ we have that

‖Λx− Λy‖ ≤ ε. Indeed, for each τ ∈ I we have

|(Fx)(τ)− (Fy)(τ)|
≤ |ϕ(τ, x(τ))− ϕ(τ, y(τ))|

+

∣∣∣∣x2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt− y2(τ)

∫ 1

0

u(τ, t, (Λy)(t)) dt

∣∣∣∣
≤ c|x(τ)− y(τ)|+

∣∣∣∣x2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt− y2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt

∣∣∣∣
+

∣∣∣∣y2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt− y2(τ)

∫ 1

0

u(τ, t, (Λy)(t)) dt

∣∣∣∣
≤ c|x(τ)− y(τ)|+ |x2(τ)− y2(τ)|

∫ 1

0

|u(τ, t, (Λx)(t))| dt

+|y2(τ)|
∫ 1

0

|u(τ, t, (Λx)(t))− u(τ, t, (Λy)(t))| dt.

Therefore, we have

‖Fx− Fy‖ ≤ c‖x− y‖+ 2r0Ψ(ψ(r0))‖x− y‖+ r20ω
∗(u, ε), (3.4)

where we denoted

ω∗(u, ε) = sup{|u(τ, t, x)− u(τ, t, y)| : τ, t ∈ I, x, y ∈ [0, ψ(r0)], |x− y| ≤ ε}.

From assumption (a4) we infer that ω∗(u, ε)→ 0 as ε→ 0 and therefore, the operator
F is continuous in B+

r0 .

Step 5: An estimate of F with respect to the term related to continuity ω0.

Let ∅ 6= X ⊂ B+
r0 , fix an arbitrarily number ε > 0 and choose x ∈ X and τ1, τ2 ∈ I

such that |τ2 − τ1| ≤ ε. Without restriction of the generality, we may assume that
τ1 ≤ τ2. In the view of our assumptions, we have
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|(Fx)(τ2)− (Fx)(τ1)|
≤ |φ(τ2)− φ(τ1)|+ |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))|

+
∣∣x2(τ2) (Ux)(τ2)− x2(τ2) (Ux)(τ1)

∣∣
+
∣∣x2(τ2) (Ux)(τ1)− x2(τ1) (Ux)(τ1)

∣∣
≤ ω(φ, ε) + |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ2))|+ |ϕ(τ1, x(τ2))− ϕ(τ1, x(τ1))|
+
∣∣x2(τ2)

∣∣ |(Ux)(τ2)− (Ux)(τ1)|+
∣∣x2(τ2)− x2(τ1)

∣∣ |(Ux)(τ1)|
≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε) + |x(τ2)|2 |(Ux)(τ2)− (Ux)(τ1)|

+ |x(τ2)− x(τ1)| |x(τ2) + x(τ1)| |(Ux)(τ1)|
≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε)

+‖x‖2
∫ 1

0

|u(τ2, t, (Λx)(t))− u(τ1, t, (Λx)(t))| dt+ 2‖x‖ω(x, ε)Ψ(ψ(‖x‖))

≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε) + ‖x‖2ωψ(‖x‖)(u, ε) + 2‖x‖ω(x, ε)Ψ(ψ(‖x‖)),

where we denoted

γr0(ϕ, ε) = sup {|ϕ(τ2, x)− ϕ(τ1, x)| : τ1, τ2 ∈ I, x ∈ [0, r0], |τ2 − τ1| ≤ ε}

and

ωb(u, ε) = sup {|u(τ2, t, y)− u(τ1, t, y)| : t, τ1, τ2 ∈ I, y ∈ [0, b], |τ2 − τ1| ≤ ε} .

Hence,

ω(Fx, ε) ≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε) + r20ωψ(r0)(u, ε) + 2r0ω(x, ε)Ψ(ψ(r0)).

Consequently,

ω(FX, ε) ≤ ω(φ, ε) + γr0(ϕ, ε) + (c+ 2r0Ψ(ψ(r0))) ω(X, ε) + r20ωψ(r0)(u, ε).

Since the function φ is continuous on I, the function ϕ is uniformly continuous on
I × [0, r0] and the function u is uniformly continuous the set I × I × [0, ψ(r0)], then
we obtain

ω0(FX) ≤ (c+ 2r0Ψ(ψ(r0))) ω0(X). (3.5)

Step 6: An estimate of F with respect to the term related to monotonicity d.

Fix an arbitrary x ∈ X and τ1, τ2 ∈ I with τ2 > τ1. Then, taking into account
our assumption, we get

|(Fx)(τ2)− (Fx)(τ1)| − ((Fx)(τ2)− (Fx)(τ1))

=

∣∣∣∣φ(τ2) + ϕ(τ2, x(τ2)) + x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt
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−φ(τ1)− ϕ(τ1, x(τ1))− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

∣∣∣∣
−
(
φ(τ2) + ϕ(τ2, x(τ2)) + x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt

−φ(τ1)− ϕ(τ1, x(τ1))− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

)
≤ [|φ(τ2)− φ(τ1)| − (φ(τ2)− φ(τ1))]

+ [|ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))| − (ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1)))]

+

∣∣∣∣x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt

∣∣∣∣
+

∣∣∣∣x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

∣∣∣∣
−
(
x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt

)
−
(
x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

)
≤ |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))| − (ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1)))

+
[
|x2(τ2)− x2(τ1)| − (x2(τ2)− x2(τ1))

] ∫ 1

0

u(τ2, t, (Λx)(t)) dt

+x2(τ1)

[∣∣∣∣∫ 1

0

u(τ2, t, (Λx)(t)) dt−
∫ 1

0

u(τ1, t, (Λx)(t)) dt

∣∣∣∣
−
(∫ 1

0

u(τ2, t, (Λx)(t)) dt−
∫ 1

0

u(τ1, t, (Λx)(t)) dt

)]
≤ d(Φx) + 2‖x‖Ψ(ψ(‖x‖))d(x).

The above estimate gives us that

d(Fx) ≤ cd(x) + 2r0Ψ(ψ(r0))d(x),

and consequently,

d(FX) ≤ (c+ 2r0Ψ(ψ(r0)))d(X). (3.6)

Step 7: F is a contraction with respect to the measure of noncompactness µ.

By adding (3.5) and (3.6), we get

ω0(FX) + d(FX) ≤ (c+ 2r0Ψ(ψ(r0)))ω0(X) + (c+ 2r0Ψ(ψ(r0)))d(X)

or

µ(FX) ≤ (c+ 2r0Ψ(ψ(r0)))µ(X).
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Since c + 2r0Ψ(ψ(r0)) < 1, then the operator F is contraction with respect to the
measure of noncompactness µ.

Finally, Theorem 2.3 guarantees that Eq.(1.1) has at least one solution x ∈ C(I)
which is nondecreasing on I. This completes the proof.

4. Example

Let us consider the cubic Urysohn integral equation

x(τ) =

√
τ

8
+
τx(τ)

1 + τ2
+
x2(τ)

4

∫ 1

0

arctan

(
τ
∫ t
0
sx2(s) ds

1 + t2

)
dt. (4.1)

Here, φ(τ) =
√
τ
8 and this function verifies assumption (a1) and ‖φ‖ = 1/8. Also,

ϕ(τ, x) = τx
1+τ2 and this function verifies assumption (a2) with

|ϕ(τ, x)− ϕ(τ, y)| ≤ 1

2
|x− y| ∀ t ∈ I & (x, y) ∈ R2.

Moreover, the function ϕ verifies assumption (a3). Indeed, for arbitrary nonnegative
function x ∈ C(I) and τ1, τ2 ∈ I with τ1 ≤ τ2, we have

d(Φx) = |(Φx)(τ2)− (Φx)(τ1)| − ((Φx)(τ2)− (Φx)(τ1))

= |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))| − (ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1)))

=

∣∣∣∣ τ2
1 + τ22

x(τ2)− τ1
1 + τ21

x(τ1)

∣∣∣∣− ( τ2
1 + τ22

x(τ2)− τ1
1 + τ21

x(τ1)

)
≤ τ2

1 + τ22
|x(τ2)− x(τ1)|+

∣∣∣∣ τ2
1 + τ22

− τ1
1 + τ21

∣∣∣∣x(τ1)

− τ2
1 + τ22

(x(τ2)− x(τ1))−
(

τ2
1 + τ22

− τ1
1 + τ21

)
x(τ1)

=
τ2

1 + τ22
[|x(τ2)− x(τ1)| − (x(τ2)− x(τ1))]

=
τ2

1 + τ22
d(x) ≤ 1

2
d(x).

The function u(τ, t, x) = arctan τx
1+t2 satisfies assumption (a4), we have |u(τ, t, x)| ≤ |x|

which means Ψ(r) = r. Moreover, the operator (Λx)(τ) =
∫ τ
0
tx2(t) dt verifies as-

sumption (a5) with ψ(r) = r2.
Therefore, the inequality (3.1) has the form 1

8 + r
2 + r4 ≤ r or 1

4 + r + 2r4 ≤ 2r.
This inequality admits r0 = 1/2 as a positive solution. Moreover,

c+ 2r0Ψ(ψ(r0)) =
1

2
+

1

4
=

3

4
< 1.

Consequently, Theorem 3.1 guarantees that equation (4.1) has a continuous nonde-
creasing solution.
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