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Remarkable identities

Jan Gérowski, Jerzy Zabowski

ABSTRACT: In the paper a number of identities involving even powers
of the values of functions tangent, cotangent, secans and cosecans are
proved. Namely, the following relations are shown:

gfm (2m) = wy(m),
mE_IOIfQ”(Qﬁlw) = oylm),
if% (2,7:11) = wg(m),

where m, n are positive integers, f is one of the functions: tangent, cotan-
gent, secans or cosecans and wy(x), ve(x), Ws(x) are some polynomials
from Q[x].

One of the remarkable identities is the following:

m—1
(2 I8k
sin™ L) = mQ7 provided m > 1.

j=0

Some of these identities are used to find, by elementary means, the
sums of the series of the form Z;’il -+, where n is a fixed positive in-
teger. One can also notice that Bernoulli numbers appear in the leading
coefficients of the polynomials w(z), vs(z) and @ (z).
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In [7] the following formulas have been proved

- mj m(2m — 1) 2m(m + 1)
2 = =
J; O o1 3 Z sin - 2 + 1 3
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where m € Ny. By Ny for a positive integer & we mean N\ {0,1,2...,k —1}. The

71_2

above identities were then used in an elementary proof of the formula Y ;7 % =%

In this paper we develop the ideas from [7] to prove more generalized identities
than (1). Next we use some of them to find the sum of > 77| 4, where n € Nj.
The general identities given in this article yield, in particular, the following identity
of uncommon beauty

27 +1
Z:shf2 Lﬂzmz, m € Nj.

Some elementary methods of finding the sums of the series of the form Z;’il ]2%
be found for example in [1], [3], [5], [6], [8].
We start by recalling some basic facts on symmetric polynomials in m variables.

Put

may

m
an:Zx? for n € Ny,
i=1
T = Z TjyTjy - T, for k € {1,2,...,m}.

1<j1<g2 < <gp<m

Moreover, for the convenience set 7, = 0 for k > m.
The following lemma comes from [2].

Lemma 1 (Newton). Let n € Ny, then
Op = T10n_1+ To0n o — -+ (=1)""r,_ 101 + (=1)"n7, = 0. (2)

In view of Lemma 1 we have

(=) tnr, -1 T ... (1) 721, (D)l
(—1)"(11 — ]-)Tnfl 1 —T1 ... (—1)“737'”,3 (—1)“72’7',1,2
(- tn—-2)1,2 0 1 . (=D (D) 37
On = det . . . .
—27’2 0 0 e 1 —T1
(51 0 0 0 1

for every n € Ny. Indeed, putting in (2) instead of n respectively n — 1,n —2,...,1
we get, together with (2), the system of n equations in n variables: o1, ...,0,. Such
a system is a Cramer’s system and by the Cramer’s rule we get (3).

From now on by Dy, and Dot we denote the domains of the trigonometric func-
tions tangent and cotangent, respectively.

Lemma 2. The following identities hold true:

(A) 31;;22;”;” cotr = Z?;O (2§T1)(—1)j tan? «, (m,2) € N X (Dgan N Deot);

(B) cosZmz _ §~m (QW)(—I)j tan® z, (m,z) € N X Dyan;

cos2™m x 7=0 \2j
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(C) “egaminat cote = Y, (31)) (-1 tan® 2, (m,@) € N X (Dian N Deor);

(D) SmGmale — 53 () (<17 cot?™ 2 2, (m, @) € N X Deoy;

(E) % =30 (ngl)(_l)j tan®/ x, (m,z) € N X Dian;

(F) S tane = S0 (57 (-1Y cot®™ ¥ o, (m,z) € N x (D N
Deor).

Proof. Tt is a known fact that

k
k . .
Z ( ) cos* I z(isinz)? = (cosz + isinz)* = cos kx + isin kx

=0 M

for £ € N and =z € R. Putting £ = 2m in the above equation and comparing real and
imaginary parts of the both sides we obtain (A) and (B). Similarly, with k = 2m + 1
we get (C), (D), (E) and (F). O

Now we prove the following result.

Theorem 1. For every m € Ng and any n € Ny,

m—1 7Tj m—1 7Tj
Un,m(A) = tanQ" % = Z COt2n %,
Jj=1 j=1
p N . Gr) .
where 0, m(A) denotes the determinant given by (3) in which 7; = 315 for j €

{1,2,...,n}.
Proof. Replace in the identity (A) of Lemma 2, tan?x by t and set
way =3 (0" )1 @
= 27+1

then w4 (t) is a polynomial of order m — 1 in the real variable ¢.
On the other hand, substituting 7, where [ € {1,2,...,m — 1}, for z in (A) we
get

m 2m ; - ml
0= —1) tan¥ — le{1,2,....m—1}.
> (o)1)t I e 2 )

Hence and by (4) we obtain

wa(t) = (—1)m—1<2;”z 1) nﬁl (t—tan2 ;i) - (—1)m—12m7:1:[11 (t—tan2 ;i) .

j=1
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This and the Vieta’s formulas give

2m
pmky omky L o TR (551)

2m 2m 2m 2m
1<k <ka<---<k;j<m—1

and in view of (3) we have

m—1 7T'j
On,m(A) = . tanQ" %
j=1
As tan 52 = cot ”(m ) for j e {1,2 — 1} we get
m—1 ﬂ'] — 7
2n 2n 2n
Z tan om Z cot Z cot”™" —
Jj=1 j=1
which completes the proof. O

Theorem 2. For every m,n € Ny the following identity holds true:

m—1 m—1
2j 1 23 1
On,m (B Z tan?® =L = j + cot?r L= J + ,
j=0 7=0
where 0, .m(B) denotes the determinant given by (3) in which 7; = (22’?) for j €

{1,2,...,n}.

Proof. Similarly as in the proof of Theorem 1, replace in the right hand side of the
identity (B) of Lemma 2, tan? z by ¢ and set

wp(t) = f: (Z?)(—l)jtj.

Next, substitute 27, where I € {0,1,...,m — 1}, for = in (B). This yields

4m

= (2m , 2041
022(2j>(—1)7tan27 pre—r le{0,1,...,m—1}.

=0

Hence and by the definition of wg(t) we get

m—1 .
2 1
wp(t) = (-1)™ <t — tan? 34;; 71') ,
0

j=

which in view of the Vieta’s formulas gives

n22k1+1tan22k2+1-~t 22k3+1:<2m)

4m am P Tam 2j

1<k <ka<---<kj<m-—1
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By this and (3),

m—1 .
2 1
On,m(B) = Z tan2" 34;; .
j=0

Using the same argument as in the proof of Theorem 1 we get

m—1 m—1
2] + 1 2j+1 1
t 2n — 2n
E an E cot am
Jj= J=0
and the proof is completed. O

Using identities (C) and (D) of Lemma 2 and the same method as in proofs of
Theorems 1 and 2 one may obtain

Theorem 3. For every m,n € Ny the following identity holds true:

m
m
onm(C) = Ztanzn Qmi— .
i=1

where oy, m(C) denotes the determinant given by (3) in which T; = (2m+1) for j €
{1,2,...,n}.
Theorem 4. For every m,n € Ny the following identity holds true:
2n ﬂ-j
On,m (D ;COt ma1
where oy, (D) denotes the determinant given by (3) in which 7; = ﬁ(éﬁi‘f) for

je{1,2,...,n}.

Finally, applying the same reasoning as in the proof of Theorem 1 from (E) and
(F) of Lemma 2 we have

Theorem 5. For every m,n € Ny the following identity holds true:

m—1

2j+1
nom(E) = tan?" ————7,
7nm(E) z_: o 2(2m+1)77

where 0, ;m(E) denotes the determinant given by (3) in which 7; = le_H (22’?:11) for
je{l,2,...,n}.

Theorem 6. For every m,n € Ny the following identity holds true:

m—1
27+1
n = t2n T,
a. 1, m JZ CO 2m + 1)
where oy, m(F) denotes the determinant given by (3) in which 7; = (2m+1) for j €

{1,2,...,n}.
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The following formulas
on 1—sin?z\" on 1—cos?z\"
cotVr=(——5—] , tan™ & = | ——5——
sin® cos?

yield
Lemma 3. The following identities hold true:
(M) (—=1) sin¥ T g = (—1)" 1 4 cot?”
G ;1_01 ; 1) 2j—2n 1 1 2

n—1 (n)(_l)J C082j72nx — (_]_)”71 —+ tanQ" Z,

(H) Y0 ("

Lemma 4. Assume that n € Ny and x € Do, then

-0 G =6 G

(n,x) € Ny X Deots

(m,x) € Ny X Diay.

3

(=)™ 4 cot®™ 5

()" 4ot 21 () () (D00

n— n— n—2 n—3 (n—2

sin;" —det | D" P otz 0 1 ("7 o (=0

1+ cot’x 0 0 0 e 1
Proof. Replacing n in (G) (Lemma 3) by n — 1,n — 2,...,1, respectively we get,
together with (G), the system of n equations in n variables:

1 1 1

) . — PR ] .
g’ sin?" 2 g sin?

sin x
Such a system is a Cramer’s system and the assertion follows by the Cramer’s rule.

O

Using (H) in the same manner as in Lemma 4 we obtain

Lemma 5. Let n € Ny and x € Dyan, then
) A ) R € ) Ml Oy
- 2D DG

1 2

(- ' +tan*z —(7)
(—1)'“2 +tan®" "2 g 1
-1)

— = det ( =3 4 tan®" 4 0 1 f("IQ) o (71)”_3(7173)
1+ tan’z 0 0 0 1
To shorten notation from now on we set
a =) G =G - D)
a1 1 =(") () DML
an—z 0 L =) (DMTGID)

wan, an-1,...,a1) = det

al 0
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thus the identities of Lemmas 4 and 5 can be written as

ﬁ =u ((71)”71 +cot?x, (=1)""2 4 cot™ 2 x,...,1+ cot? 1:) (5)
and

ﬁ =u ((—1)”_1 +tan®" z, (=1)" "% +tan®? 2, ..., 1 + tan? m) , (6)
respectively.

Theorem 7. For every m € No and each n € Ny the following identity holds true:

m—1 7i'j m—1 7Tj

. —2n —2n

S — = cos — 7
; 1n 2m ; 2m (7)

= p((=D"Hm = 1) + onm(A), ()" (m = 1) + on_1.m(4)
L (m=1)+01m(A)),

where the numbers oy m(A) for k € {1,2,...,n} are defined in Theorem 1.
Proof. In view of (5) we can write

s —2n 7Tj n—1 2n 7Tj n—2 2n—2 ﬂ-j 2 7Tj
3 — = -1 t — (-1 t — ..., 1 t7 —
S o, TH <( )" o 2m’ (=1)""" +co 2m’ oo 2m>

for j € {1,2,...,m — 1}. This by the definition of u, properties od determinants and
Theorem 1 gives

mj
ZSIH 7m
— m—1 .
— z_:( n1+COt2nﬂ->’Z< n2+c0t2n 2;;.771)7
m—

j=1
1 .
, <1 + cot2 )
1 2m

= p((=0)" M m =1 +onm(A), (1) (m—1) + on_1m(4) ,
L (m—=1)+01m(4)).

The same reasoning applies to the second identity. O

Analysis similar to that in the proof of Theorem 7 and the use of Theorems 2 — 6
give
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Theorem 8. For every n,m € Ny the following identities holds true:

: 2n )
Zsm Cy—— (9)
j=1
= M((—l)"_lm—l—an,m(D),(—l)" m+op, 1.m(D) m—l—alm(D)) ,
G —2n ’7Tj
j;cos Gy (10)

= M ((_l)nilm + a'n,m(o)a (_1)n72m + Un—1,7rz(0)7 c,m+ Ul,m(c)) 5

m—1

(25 4+ m

E sin~ L) (11)
2(2m +1)

h

= L ((—1)”*1m + 0nm(F), (—1)"?m + On—1,m(F),...,m+ aLm(F)) ,

m—1

(25 + )m
Z cos™ ‘27m+)1) (12)

%

= pu ((—1)”*1m + onm(E), ()" 2m+ 0, 1.m(E),...,m+ aLm(E)) ,

where 0k m(B), 0km(C), 0km(D), ok m(E), okm(F) fork € {1,2,...,n} are defined
in Theorems 2 — 6.

Now we show that the general identities from Theorems 1 — 8 yield some particular
equalities, including the one considered by the authors as remarkable.

Theorem 9. If m € N, then

. 2 1
Z sin2 X , provided m > 2, (13)
= m 3
m—1 .
—1 -2
Z cot? T — %, provided m > 2, (14)
m
j=1
m—1
27+1
sin—? M =m?, provided m > 1, (15)
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Proof. According to Theorem 1 we have

m—1 . m—1 .
] 9 TJ 1 /2m
tan? —- = t — = — . 16
N om ZCO 2m 2m(3> (16)

=1 j=1

<.

On the other hand, in view of

tan?z + cot® z = -2

sin? 2z

we get
Ztn ——&-Z tQTL—-—ZLZsm —.— 2(m —1).

Combining this with (16) gives

m—1 _27_[_] 271

3

sin

j=1

for m > 2. This proves (13).
To prove (14) notice that the identity

cot? x — — =-1
yields
m—1 i m—1 e
Zcot2aj—Zsin_2E]:—(m—l), m > 2.
j=1 j=1

Thus by (13) we obtain (14).
Finally we show the remarkable (15). Theorem 8 leads to

m—1 m—1
(2j+ )m (2 Dr 2
sin™ ] + cos™ L) =m+ < ;n> = 2m? (17)
7=0 7=0
for m > 1. Since
1 1 4
T 5T 3
sin“x cos“x  sin2x
we have
m—1 m—1 m—1
2 (2j+ D o (27 4+ D)m 2 (27 +1)m
=4 >1
Z sin m + S m Z sin o s m s
j=0 7=0 j=0
which by (17) implies (15), and the theorem follows. O

Next we use the the identities proved here to find the sums of the series of the
form Y 77, k%7 where n € N;. We begin with the following lemma.
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Lemma 6. Let n € Ny, then expression oy m(A), defined in Theorem 1, is a value of
some polynomial from Qlz], where x = m. The order of such a polynomial does not
exceed 2n.

Proof. The proof is by induction on n. For n = 1 we have

1 /2m 2 1
A = — = — 27 —_ =
71m(4) 2m< 3 > 3" T Ty

and the assertion follows. Fix n > 2 Assuming Lemma 6 to hold for any k& € Ny,
k <n — 1 we prove it for n. By (2),

n—1

Tnm(A) =D (-1 7500 jn(A) = (=1)"nTn,

j=1
1 2m
2m (2j+1
on,m(A) is a value of some polynomial from Q[x] of order not greater than 2n with
T = m, as claimed. O]

where 7; = ) for 7 € {1,2,...,n}. Hence by the inductive assumption

Theorem 10. For every n € Ny,

=1 . T (A)
> = Jim o
P meee (2m)

where oy, 1, (A) is defined in Theorem 1.

Proof. Observe that

1 1 s
0<cotr < — < — xE(O,f),
T sinz 2
thus )
. n

] 2m 1
cot?m — < | — < —F
2m ( ] ) sin?" s
m

and in consequence

for n € Ny, m € Np and j € {1,2,...,n}. By the definitions of oy, ,,(A4) and the
function p we have

7T2n0—nm A m—1 1 7.[.271 .
(2777:)27(L) Z 12N < W“((fl) l(m - 1) + Un,m(A),
i=1 7

(_1)n72(m - 1) + O'n—lﬂn(A)a (18)
oom—1401 ,(4)).
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The formula for i and the properties of determinants give

p (1) Hm = 1) + 0pm(A), (=1)"2(m — 1) + 0p_1,m(A), ..., m — 1+ 01 1 (A))

=l D) DR ()T 4 (0 (A), 0 (A), - 51 (A))
= (m — 1)01 + Un,m(A) + CQO’n,Lm(A) +...+Cho m(A),

)

where C,...,C, are constants depending on n. Hence by Lemma 6 and inequality
(18) we obtain

g, m(4A) <1 20 m (4)
. , < 1 . ,
LU @m)n = ]; an S 2m)2n
which establishes the formula. O

Remark 1. Note that in the proof Theorem 10 (the last step of the proof) we have
actually proved more, namely that the order of the polynomial from Lemma 6 equals
exactly 2n. Indeed, if it was not true, we would have

and consequently

which is impossible.

Remark 2. Treating o, (A) as a polynomial in m of order 2n we have

i 7T2n0'n7m(A) B ,/T2n
mgnoo (27’77,)2" = Q2n 4n )

where ay,, denotes the leading coefficient of oy, ,,(A). On the other hand,

22n— 1 ﬂ_Zn

=1
Bop— (1) = —_, € Ny,

where By, stands for the 2n-th Bernoulli number (see [4], p.320). Thus we get the
following relation between Bernoulli numbers and the coefficients of oy, (A)

24n71

n = Bop——(—1)""1! .
as ) (271)' ( ) s n € Ny

Remark 3. Similarly as Theorem 10 one can show that

e o]

1 2n B 2n D 2n Ia
Z—— lim T InmiZ) Un’m( )— lim T Inmid) Un,m( )— lim T _Inmll) Un’m( )

j2" T mSoo (2m)2” T mSoo (2m)2” T m—oo (2m)2” ’ n €Ny

j=1

where 0, (B), 0n,m(D) and o, (F') are defined in Theorems 2, 4 and 6, respectively.
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