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Abstract: The fractional derivative of the Riemann-Liouville and
Caputo types played an important role in the development of the theory
of fractional derivatives, integrals and for its applications in pure math-
ematics ([18], [21]). In this paper, we study the existence of weak solu-
tions for fractional differential equations of Riemann-Liouville and Caputo
types. We depend on converting of the mentioned equations to the form of
functional integral equations of Volterra-Stieltjes type in reflexive Banach
spaces.
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1. Introduction and preliminaries

Let E be a reflexive Banach space with norm ‖ . ‖ and dual E∗. Denote by C[I, E] the
Banach space of strongly continuous functions x : I → E with sup-norm.
Fractional differential equations have received increasing attention due to its applica-
tions in physics, chemistry, materials, engineering, biology, finance [15, 16]. Fractional
order derivatives have the memory property and can describe many phenomena that
integer order derivatives cant characterize. Only a few papers consider fractional dif-
ferential equations in reflexive Banach spaces with the weak topology [6, 7, 14, 22,
23].
Here we study the existence of weak solutions of the Volterra-Stieltjes integral equa-
tion

x(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I = [0, T ],
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in the reflexive Banach space E.
Let α ∈ (0, 1). As applications, we study the existence of weak solution for the
differential equations of fractional order

RDαx(t) = f(t, x(t)), t ∈ (0, T ] (1.1)

with the initial data
x(0) = 0 , (1.2)

where RDαx(.) is a Riemann-Liouville fractional derivative of the function x : I =
[0, T ]→ E.
Also we study the existence of mild solution for the initial value problem

CDαx(t) = f(t, x(t)), t ∈ (0, T ] (1.3)

with the initial data
x(0) = x0 , (1.4)

where CDαx(.) is a Caputo fractional derivative of the function x : I : [0, T ]→ E.
Functional integral equations of Volterra-Stieltjes type have been studied in the space
of continuous functions in many papers for example, (see [1-5] and [8]).
For the properties of the Stieltjes integral (see Banaś [1]).

Definition 1.1. The fractional (arbitrary) order integral of the function f ∈ L1 of
order α > 0 is defined as [18, 21]

Iαf(t) :=

∫ t

0

(t− s)α−1

Γ(α)
f(s) ds.

For the fractional-order derivative we have the following two definitions.

Definition 1.2. The Riemann-Liouville fractional-order derivative of f(t) of or-
der α ∈ (0, 1) is defined as ([18], [21])

RDα
a f(t) =

d

dt

∫ t

a

(t− s)−α

Γ(1− α)
f(s) ds

or
RDα

a f(t) =
d

dt
I1−αa f(t).

Definition 1.3. The Caputo fractional-order derivative of g(t) of order α ∈ (0, 1] of
the absolutely continuous function g(t) is defined as ([9])

CDα
a g(t) =

∫ t

a

(t− s)−α

Γ(1− α)

d

ds
g(s) ds

or
CDα

a g(t) = I1−αa

d

dt
g(t).
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Now, we shall present some auxiliary results that will be need in this work.
Let E be a Banach space (need not be reflexive) and let x : [a, b]→ E, then

(1-) x(.) is said to be weakly continuous (measurable) at t0 ∈ [a, b] if for every
φ ∈ E∗, φ(x(.)) is continuous (measurable) at t0.

(2-) A function h : E → E is said to be weakly sequentially continuous if h maps
weakly convergent sequences in E to weakly convergent sequences in E.

If x is weakly continuous on I, then x is strongly measurable and hence weakly
measurable (see [10] and [13]). It is evident that in reflexive Banach spaces, if x is
weakly continuous function on [a, b], then x is weakly Riemann integrable (see [13]).

Definition 1.4. Let f : I × E → E. Then f(t, u) is said to be weakly-weakly
continuous at (t0, u0) if given ε > 0, φ ∈ E∗ there exists δ > 0 and a weakly open
set U containing u0 such that

| φ(f(t, u)− f(t0, u0)) |< ε

whenever

| t− t0 |< δ and u ∈ U.

Now, we have the following fixed point theorem, due to O’Regan, in the reflexive
Banach space (see [19]) and some propositions which will be used in the sequel [13,
20].

Theorem 1.5. Let E be a Banach space and let Q be a nonempty, bounded, closed
and convex subset of C[I, E] and let F : Q→ Q be a weakly sequentially continuous
and assume that FQ(t) is relatively weakly compact in E for each t ∈ I. Then,
F has a fixed point in the set Q.

Proposition 1.6. A convex subset of a normed space E is closed if and only if it is
weakly closed.

Proposition 1.7. A subset of a reflexive Banach space is weakly compact if and only
if it is closed in the weak topology and bounded in the norm topology.

Proposition 1.8. Let E be a normed space with y ∈ E and y 6= 0. Then there exists
a φ ∈ E∗ with ‖ φ ‖= 1 and ‖ y ‖= φ(y).

2. Volterra-Stieltjes integral equation

In this section we prove the existence of weak solutions for the Volterra-Stieltjes
integral equation

x(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I = [0, T ], (2.5)
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in the space C[I, E]. To facilitate our discussion, denote Λ by

Λ = {(t, s) : 0 ≤ s ≤ t ≤ T}

and let p : I → E, f : I × E → E and g : Λ→ R be functions such that:

(i) p ∈ C[I, E].

(ii) The function f is weakly-weakly continuous.

(iii) There exists a constant M such that ‖ f(t, x) ‖≤M .

(iv) The function g is continuous on Λ.

(v) The function s→ g(t, s) is of bounded variation on [0, t] for each fixed t ∈ I.

(vi) For any ε > 0 there exists δ > 0 for all t1, t2 ∈ I such that t1 < t2 and t2− t1 ≤
δ the following inequality holds

t1∨
0

[g(t2, s)− g(t1, s)] ≤ ε.

(vii) g(t, 0) = 0 for any t ∈ I.

Obviously we will assume that g satisfies assumptions (iv)-(vi). For our purposes we
will only need the following lemmas.

Lemma 2.1. [5] The function z →
∨z
s=0 g(t, s) is continuous on [0, t] for any fixed t ∈

I.

Lemma 2.2. [5] For an arbitrary fixed 0 < t2 ∈ I and for any ε > 0, there exists δ >
0 such that if t1 ∈ I, t1 < t2 and t2 − t1 ≤ δ then

t2∨
s=t1

g(t2, s) ≤ ε.

Lemma 2.3. [5] The function t→
∨t
s=0 g(t, s) is continuous on I. Then there exists

a finite positive constant K such that

K = sup{
t∨

s=0

g(t, s) : t ∈ I}.

Definition 2.4. By a weak solution to (2.5) we mean a function x ∈ C[I, E] which
satisfies the integral equation (2.5). This is equivalent to find x ∈ C[I, E] with

φ(x(t)) = φ(p(t) +

∫ t

0

f(s, x(s)) dsg(t, s)), t ∈ I ∀ φ ∈ E∗.
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Now we can prove the following theorem.

Theorem 2.5. Under the assumptions (i)-(vii), the Volterra-Stieltjes integral equa-
tion (2.5) has at least one weak solution x ∈ C[I, E].

Proof. Define the nonlinear Volterra-Stieltjes integral operator A by

Ax(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I.

For every x ∈ C[I, E], f(., x(.)) is weakly continuous ([24]). To see this we
equip E and I × E with weak topology and note that t 7→ (t, x(t)) is continuous
as a mapping from I into I × E, then f(., x(.)) is a composition of this mapping
with f and thus for each weakly continuous x : I → E, f(., x(.)) : I → E is weakly
continuous, means that φ(f(., x(.))) is continuous, for every φ ∈ E∗, g is of bounded
variation. Hence f(., x(.)) is weakly Riemann-Stieltjes integrable on I with respect
to s→ g(t, s). Thus A makes sense.
For notational purposes ‖ x ‖0= sup

t∈I
‖ x(t) ‖.

Now, define the set Q by

Q =
{
x ∈ C[I, E] :‖ x ‖0≤M0 ,

‖ x(t2)− x(t1) ‖≤‖ p(t2)− p(t1) ‖ +MN(ε) +M

t2∨
s=t1

g(t2, s)
}
.

First notice that Q is convex and norm closed. Hence Q is weakly closed by Proposi-
tion 1.6.
Note that A is well defined, to see that, Let t1, t2 ∈ I, t2 > t1, without loss of
generality, assume Ax(t2)−Ax(t1) 6= 0

‖ Ax(t2)−Ax(t1) ‖ = φ(Ax(t2)−Ax(t1)) ≤ | φ(p(t2)− p(t1)) |

+ |
∫ t2

0

φ(f(s, x(s))) dsg(t2, s)−
∫ t1

0

φ(f(s, x(s))) dsg(t1, s) |

≤ ‖ p(t2)− p(t1) ‖ + |
∫ t1

0

φ(f(s, x(s))) dsg(t2, s)

+

∫ t2

t1

φ(f(s, x(s))) dsg(t2, s)−
∫ t1

0

φ(f(s, x(s))) dsg(t1, s) |

≤ ‖ p(t2)− p(t1) ‖ + |
∫ t1

0

φ(f(s, x(s))) ds[g(t2, s)− g(t1, s)] |

+ |
∫ t2

t1

φ(f(s, x(s))) dsg(t2, s) |
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≤ ‖ p(t2)− p(t1) ‖

+

∫ t1

0

| φ(f(s, x(s))) | ds[
s∨
z=0

(g(t2, z)− g(t1, z))]

+

∫ t2

t1

| φ(f(s, x(s))) | ds[
s∨
z=0

g(t2, z)]

≤ ‖ p(t2)− p(t1) ‖ +M

∫ t1

0

ds[

s∨
z=0

(g(t2, z)− g(t1, z))]

+ M

∫ t2

t1

ds[

s∨
z=0

g(t2, z)]

≤ ‖ p(t2)− p(t1) ‖ +M

t1∨
s=0

(g(t2, s)− g(t1, s))

+ M [

t2∨
s=0

g(t2, s)−
t1∨
s=0

g(t2, s)]

≤ ‖ p(t2)− p(t1) ‖ +MN(ε) +M

t2∨
s=t1

g(t2, s) ,

where

N(ε) = sup{
t1∨
s=0

(g(t2, s)− g(t1, s)) : t1, t2 ∈ I, t1 < t2, t2 − t1 ≤ ε}.

Hence

‖ Ax(t2)−Ax(t1) ‖≤‖ p(t2)− p(t1) ‖ +MN(ε) +M

t2∨
s=t1

g(t2, s), (2.6)

and so Ax ∈ C[I, E]. We claim that A : Q → Q is weakly sequentially continuous
and A(Q) is weakly relatively compact. Once the claim is established, Theorem 1.5
guarantees the existence of a fixed point x ∈ C[I, E] of the operator A and the integral
equation (2.5) has a solution x ∈ C[I, E].
To prove our claim, we start by showing that A : Q→ Q. Take x ∈ Q, note that the
inequality (2.6) shows that AQ is norm continuous. Then by using Proposition 1.8
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we get

‖ Ax(t) ‖ = φ(Ax(t)) ≤ | φ(p(t)) | + | φ(

∫ t

0

f(s, x(s)) dsg(t, s)) |

≤ ‖ p(t) ‖ +

∫ t

0

| φ(f(s, x(s))) | ds(
s∨
z=0

g(t, z))

≤ ‖ p(t) ‖ +M

∫ t

0

ds(

s∨
z=0

g(t, z))

≤ ‖ p(t) ‖ +M

t∨
s=0

g(t, s)

≤ ‖ p ‖0 +M sup
t∈I

t∨
s=0

g(t, s)

≤ ‖ p ‖0 +MK = M0 .

Then

‖ Ax ‖0= sup
t∈I
‖ Ax(t) ‖≤M0.

Hence, Ax ∈ Q and AQ ⊂ Q which prove that A : Q → Q, and AQ is bounded
in C[I, E].
We need to prove now that A : Q → Q is weakly sequentially continuous.
Let {xn(t)} be sequence in Q weakly convergent to x(t) in E, since Q is closed we
have x ∈ Q. Fix t ∈ I, since f satisfies (ii), then we have f(t, xn(t)) converges weakly
to f(t, x(t)). By the Lebesgue dominated convergence theorem (see assumption (iii))
for Pettis integral ([12]), we have for each φ ∈ E∗, s ∈ I

φ(

∫ t

0

f(s, xn(s)) dsg(t, s)) =

∫ t

0

φ(f(s, xn(s))) dsg(t, s)

→
∫ t

0

φ(f(s, x(s))) dsg(t, s), ∀φ ∈ E∗, t ∈ I,

i.e. φ(Axn(t))→ φ(Ax(t)), ∀ t ∈ I, Axn(t) converging weakly to Ax(t) in E.
Thus, A is weakly sequentially continuous on Q.
Next we show that AQ(t) is relatively weakly compact in E.
Note that Q is nonempty, closed, convex and uniformly bounded subset of C[I, E]
and AQ is bounded in norm. According to Propositions 1.6 and 1.7, AQ is relatively
weakly compact in C[I, E] implies AQ(t) is relatively weakly compact in E, for
each t ∈ I.
Since all conditions of Theorem 1.5 are satisfied, then the operator A has at least one
fixed point x ∈ Q and the nonlinear Stieltjes integral equation (2.5) has at least one
weak solution x ∈ C[I, E]. �
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3. Volterra integral equation of fractional order

In this section we show that the Volterra integral equation of fractional order

x(t) = p(t) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s)) ds, t ∈ I (3.7)

can be considered as a special case of the Volterra-Stieltjes integral equation (2.1),
where the integral is in the sense of weakly Riemann.
First, consider, as previously, that the function g(t, s) = g : Λ → R. Moreover, we
will assume that the function g satisfies the following condition

(vi’) For t1, t2 ∈ I, t1 < t2, the function s → g(t2, s) − g(t1, s) is nonincreasing on
[0, t1].

Now, we have the following lemmas which proved by Banaś et al. [5].

Lemma 3.1. Under assumptions (vi
′
) and (vii), for any fixed s ∈ I, the function t→

g(t, s) is nonincreasing on [s, 1].

Lemma 3.2. Under assumptions (iv), (vi
′
) and (vii), the function g satisfies as-

sumption (vi).

Consider the function g defined by

g(t, s) =
tα − (t− s)α

Γ(α+ 1)
. (3.8)

Now, we show that the function g satisfies assumptions (iv), (v), (vi
′
) and (vii).

Clearly that the function g satisfies assumptions (iv) and (vii). Also we get

dsg(t, s) =
(t− s)α−1

Γ(α)
> 0

for 0 ≤ s < t. This implies that s → g(t, s) is increasing on [0, t] for any fixed t ∈ I.
Thus the function g satisfies assumption (v).
To show that g satisfies assumption (vi

′
), let us fix arbitrary t1, t2 ∈ [0, T ], t1 < t2.

Then we get

G(s) = g(t2, s)− g(t1, s) =
tα2 − tα1 − (t2 − s)α + (t1 − s)α

Γ(α+ 1)
,

define on [0, t1]. Thus

G′(s) =
(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
=

1

Γ(α)
[

1

(t2 − s)1−α
− 1

(t1 − s)1−α
].

Hence G′(s) < 0 for s ∈ [0, t1). This means that g satisfies assumption (vi
′
). And the

function g satisfies assumptions (iv)-(vii) in Theorem 2.5.
Hence, the equation (3.7) can be written in the form

x(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s).
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And the equation (3.7) is a special case of the equation (2.5).
Now, we estimate the constants K, N(ε) used in our proof. To see this, since the
function s→ g(t, s) is nondecreasing on [0, t] for any fixed t ∈ I. Then we have

t∨
s=0

g(t, s) = g(t, t)− g(t, 0) = g(t, t) =
tα

Γ(α+ 1)
,

and

t1∨
s=0

(g(t2, s)− g(t1, s)) =

n∑
i=1

| [g(t2, si)− g(t1, si)]− [g(t2, si−1)− g(t1, si−1)] |

=

n∑
i=1

{[g(t2, si−1)− g(t1, si−1)]− [g(t2, si)− g(t1, si)]}

= g(t1, t1)− g(t2, t1)

=
1

Γ(α+ 1)
[tα1 − tα2 + (t2 − t1)α].

Thus

K = sup{
t∨

s=0

g(t, s) : t ∈ I} =
Tα

Γ(α+ 1)

and

N(ε) = sup
{ t1∨
s=0

(g(t2, s)− g(t1, s)) : t1, t2 ∈ I, t1 < t2, t2 − t1 ≤ ε
}

=
1

Γ(α+ 1)
[tα1 − tα2 + (t2 − t1)α].

Since

t2∨
s=t1

g(t2, s) = g(t2, t2)− g(t2, t1)

=
1

Γ(α+ 1)
[tα2 − (t2 − t2)α − tα2 + (t2 − t1)α]

=
(t2 − t1)α

Γ(α+ 1)
.

Then
Q = {x ∈ C[I, E] :‖ x ‖0≤M0 ,

‖ x(t2)− x(t1) ‖≤‖ p(t2)− p(t1) ‖ +
M

Γ(α+ 1)
[| tα1 − tα2 | +2(t2 − t1)α]}.

Finally, we can formulate the following existence result concerning the fractional in-
tegral equation (3.7).

Theorem 3.3. Under the assumptions (i)-(iii), the fractional integral equation (3.7)
has at least one weak solution x ∈ C[I, E].
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4. Fractional differential equations

In this section we establish existence results for the fractional differential equations
(1.1)-(1.2) and (1.3)-(1.4) in the reflexive Banach space E.

4.1. Weak solution

Consider the integral equation

x(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s)) ds, t ∈ I , (4.9)

where the integral is in the sense of weakly Riemann.

Lemma 4.1. Let α ∈ (0, 1). A function x is a weak solution of the fractional integral
equation (4.9) if and only if x is a solution of the problem (1.1)-(1.2).

Proof. Integrating (1.1)-(1.2) we obtain the integral equation (4.9). Operating
by RD

α on (4.9) we obtain the problem (1.1)-(1.2). So the equivalent between (1.1)-
(1.2) and the integral equation (4.9) is proved and then the results follows from
Theorem 3.3. �

4.2. Mild solution

Consider now the problem (1.3)-(1.4). According to Definitions 1.1 and 1.3, it is
suitable to rewrite the problem (1.3)-(1.4) in the integral equation

x(t) = x0 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s)) ds, t ∈ I . (4.10)

Definition 4.2. By the mild solution of the problem (1.3)-(1.4), we mean that the
function x ∈ C[I, E] which satisfies the corresponding integral equation of (1.3)-(1.4)
which is (4.10).

Theorem 4.3. If (i)-(iii) are satisfied, then the problem (1.3)-(1.4) has at least one
mild solution x ∈ C[I, E].

It is often the case that the problem (1.3)-(1.4) does not have a differentiable
solution yet does have a solution, in a mild sense.
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