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ABSTRACT: The fractional derivative of the Riemann-Liouville and
Caputo types played an important role in the development of the theory
of fractional derivatives, integrals and for its applications in pure math-
ematics ([18], [21]). In this paper, we study the existence of weak solu-
tions for fractional differential equations of Riemann-Liouville and Caputo
types. We depend on converting of the mentioned equations to the form of
functional integral equations of Volterra-Stieltjes type in reflexive Banach
spaces.
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1. Introduction and preliminaries

Let E be a reflexive Banach space with norm || . || and dual E*. Denote by C[I, E] the
Banach space of strongly continuous functions x : I — E with sup-norm.

Fractional differential equations have received increasing attention due to its applica-
tions in physics, chemistry, materials, engineering, biology, finance [15, 16]. Fractional
order derivatives have the memory property and can describe many phenomena that
integer order derivatives cant characterize. Only a few papers consider fractional dif-
ferential equations in reflexive Banach spaces with the weak topology [6, 7, 14, 22,
23).

Here we study the existence of weak solutions of the Volterra-Stieltjes integral equa-
tion

x(t) = plt) + / f(s,2(5)) dug(t,s), t€T=1[0,T],
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in the reflexive Banach space F.
Let « € (0,1). As applications, we study the existence of weak solution for the
differential equations of fractional order

Epox(t) = f(t,z(t)), t € (0,T] (1.1)
with the initial data
z(0)=0, (1.2)

where #D%z(.) is a Riemann-Liouville fractional derivative of the function z : I =
[0,T] — E.
Also we study the existence of mild solution for the initial value problem

CDex(t) = f(t,z(t), t € (0,T] (1.3)
with the initial data
z(0) =z , (1.4)

where “ Dxz(.) is a Caputo fractional derivative of the function x : I : [0,T] — E.
Functional integral equations of Volterra-Stieltjes type have been studied in the space
of continuous functions in many papers for example, (see [1-5] and [8]).

For the properties of the Stieltjes integral (see Bana$ [1]).

Definition 1.1. The fractional (arbitrary) order integral of the function f € L; of
order « > 0 is defined as [18, 21]

bt —s)ot
ICf(¢ ::/ ———f(s) ds.
0= | SEih— 1
For the fractional-order derivative we have the following two definitions.

Definition 1.2. The Riemann-Liouville fractional-order derivative of f(t) of or-
der o € (0,1) is defined as ([18], [21])

“Dif) = 5 [y ()
or d
RD3f() = SIS

Definition 1.3. The Caputo fractional-order derivative of g(t) of order a € (0, 1] of
the absolutely continuous function g(¢) is defined as ([9])

“D2glt) = [ oy geote) ds

or

CDYg(t) = 11 S g(0).

a
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Now, we shall present some auxiliary results that will be need in this work.
Let E be a Banach space (need not be reflexive) and let z : [a,b] — F, then

(1-) x(.) is said to be weakly continuous (measurable) at ¢y € [a,b] if for every
¢ € E*, ¢(x(.)) is continuous (measurable) at tg.

(2-) A function h: E — E is said to be weakly sequentially continuous if h maps
weakly convergent sequences in F to weakly convergent sequences in FE.

If = is weakly continuous on I, then z is strongly measurable and hence weakly
measurable (see [10] and [13]). It is evident that in reflexive Banach spaces, if z is
weakly continuous function on [a, b], then z is weakly Riemann integrable (see [13]).

Definition 1.4. Let f : I Xx E — E. Then f(¢t,u) is said to be weakly-weakly
continuous at (tg,ug) if given € > 0, ¢ € E* there exists § > 0 and a weakly open
set U containing wug such that

| &(f(t,u) — f(to,u0)) |< €

whenever
|t—to|<dand uel.

Now, we have the following fixed point theorem, due to O’Regan, in the reflexive
Banach space (see [19]) and some propositions which will be used in the sequel [13,
20].

Theorem 1.5. Let E be a Banach space and let Q) be a nonempty, bounded, closed
and convez subset of C[I, E] and let F:Q — Q be a weakly sequentially continuous
and assume that FQ(t) is relatively weakly compact in E for each t € I. Then,
F has a fized point in the set Q.

Proposition 1.6. A convex subset of a normed space E is closed if and only if it is
weakly closed.

Proposition 1.7. A subset of a reflexive Banach space is weakly compact if and only
if it is closed in the weak topology and bounded in the norm topology.

Proposition 1.8. Let E be a normed space with y € E andy # 0. Then there exists
a ¢ E with| ¢|=1 and [y l=¢(y).

2. Volterra-Stieltjes integral equation

In this section we prove the existence of weak solutions for the Volterra-Stieltjes
integral equation

z(t) = p(t) +/0 f(s,z(s)) dsg(t,s), tel=10,T], (2.5)
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in the space C[I, E]. To facilitate our discussion, denote A by
A={(t,s):0<s<t<T}

andletp: I - E, f: 1 x FE— F and g: A — R be functions such that:

(i

(ii

—

peCl,E].

The function f is weakly-weakly continuous.

(ili) There exists a constant M such that || f(¢,z) ||[< M.

(v

(vi

)
)
)
(iv) The function g is continuous on A.
) The function s — g(t, s) is of bounded variation on [0, t] for each fixed ¢t € I.
)

For any € > 0 there exists § > 0 for all t1,t5 € I such that t; < t5 and t5 —t; <
0 the following inequality holds

t1

\/[g(tQ,S) —g(t1,s)] <e

0

(vii) ¢(t,0) =0 for any ¢t € I.

Obviously we will assume that g satisfies assumptions (iv)-(vi). For our purposes we
will only need the following lemmas.

Lemma 2.1. [5] The function z — \/._, g(t, s) is continuous on [0,t] for any fized t €
I

Lemma 2.2. [5] For an arbitrary fized 0 < ty € I and for any ¢ > 0, there exists 6 >
0 such that if t1 € I, t1 <ty and tos —t; < 0 then

to

\/ g(ta, s) <e.

s=ty

Lemma 2.3. [5] The function t — \/'_, g(t, s) is continuous on I. Then there exists
a finite positive constant K such that

K:sup{\/ g(t,s):t eI}

s=0

Definition 2.4. By a weak solution to (2.5) we mean a function « € C[I, E] which
satisfies the integral equation (2.5). This is equivalent to find z € C[I, E] with

o(z(t)) = ¢(p(t)+/0 f(s,2(s)) dsg(t,5)), t €IV ¢ € E™.
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Now we can prove the following theorem.

Theorem 2.5. Under the assumptions (i)-(vii), the Volterra-Stieltjes integral equa-
tion (2.5) has at least one weak solution x € C[I, E].

Proof. Define the nonlinear Volterra-Stieltjes integral operator A by

/fsx ) dsg(t,s), tel.

For every © € CI[I,E], f(.,x(.)) is weakly continuous ([24]). To see this we
equip E and I x F with weak topology and note that ¢ — (¢,2(t)) is continuous
as a mapping from I into I X E, then f(.,z(.)) is a composition of this mapping
with f and thus for each weakly continuous z : I — E, f(.,z(.)) : I — E is weakly
continuous, means that ¢(f(.,z(.))) is continuous, for every ¢ € E*, g is of bounded
variation. Hence f(.,z(.)) is weakly Riemann-Stieltjes integrable on I with respect
to s — ¢g(t,s). Thus A makes sense.
For notational purposes || z ||o= sup || z(¢) ||

tel

Now, define the set @ by

Q={z e ClLE: v o< Mo ,

| 2(ta) — 2(tr) [|<I| p(t2) — p(t2) || +MN(e) + M \/ g(tz,S)} :

s=ty

First notice that ) is convex and norm closed. Hence @) is weakly closed by Proposi-
tion 1.6.

Note that A is well defined, to see that, Let t1, to € I, to > t1, without loss of
generality, assume Ax(ty) — Ax(t1) # 0

| Ax(ts) - Ax(t) || = S(Ax(ts) — Ax(t) < | d(p(t2) — p(tr)) |
1 [ o) dgttan) = [ ofa(9) e o) |
< lplt) - plt) ||+\/ O(f (5, 2(5))) dug(ta, s)
+ t2¢(f(, o(5) dlta.s) = [ " 6(F(s,2())) dugltn,s) |

< | plts) - plta) || + | 1¢(f(s7w(8))) dulg(ts,5) — g(t1, )] |
+ |/ O(f(5,2(5))) dag(ts,5) |



90 A.M.A El-Sayed, W.G. El-Sayed and A.A.H. Abd EI-Mowla

IA

I p(t2) = p(t1) |l |

+ / (230 | dal\ (gt 2) — g(t1,2))
0 z2=0

b [T 1o e | dlV gta.)
z=0

t1

t1 S
< pt) = plta) [0 [l (0(t2,2) ~ 9(t2,2)
0 z=0
to S
+ M ds[\/ g(t21z)]
t1 2=0
< |Ip(t2) —p(t1) |+M\/ (t2,8) — g(t1,5))
s=0
to t1
+ M[\/ g(ta,s) — \/ g(ta, s)]
s=0 s=0
< I p(ta) = p(t1) | +MN(e) + M \/ (t2,5) .
s=t1
where
—sup{\/ (ta,s) — g(t1,8)) s ti,ta € I, t1 < ta, tg —t; < €}
Hence
| Az(t2) — Ax(t1) ||<[| p(t2) — p(t1) || +MN(e) + M \/ (ta,s), (2.6)

s=t1

and so Az € C[I, E]. We claim that A : Q@ — @ is weakly sequentially continuous
and A(Q) is weakly relatively compact. Once the claim is established, Theorem 1.5
guarantees the existence of a fixed point « € C[I, E] of the operator A and the integral
equation (2.5) has a solution x € C[I, EJ.

To prove our claim, we start by showing that A : Q — Q. Take z € @, note that the
inequality (2.6) shows that AQ is norm continuous. Then by using Proposition 1.8
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we get
| Az(t) | =  S(Ax(t) < | dp(®) |+ 6 / F(s,2(5)) dug(t,5)) |
< ) \|+/|¢ 5,2(5) | do(\/ glt,2))
z=0
< el || +M / a.(\/ o(t.2))
z=0
< e H+M\/ (t, )
:>0t

< lelo+Mstt€11;S\:/Og(t78)
<l +ME = M, .

Then

| Az [lo= sup || Az(t) | < Mo.
tel

Hence, Az € @ and AQ C @ which prove that A : Q — @, and AQ is bounded
in C[I, E].

We need to prove now that A : @ — @ is weakly sequentially continuous.
Let {z,(t)} be sequence in @ weakly convergent to z(t) in E, since @ is closed we
have x € Q. Fix t € I, since f satisfies (ii), then we have f(¢,x,(t)) converges weakly
to f(t,x(t)). By the Lebesgue dominated convergence theorem (see assumption (iii))
for Pettis integral ([12]), we have for each ¢ € E*, s € [

/fsxn dag(t, ) /¢> (5,2 (5))) dagl(t, )

—>/¢ s,x(8))) dsg(t,s), Vo € E*, t €I,

ie. p(Ax, (b)) = ¢(Ax(t)), Vit €I, Ax,(t) converging weakly to Az(t) in E.

Thus, A is weakly sequentially continuous on Q.

Next we show that AQ(t) is relatively weakly compact in E.

Note that @ is nonempty, closed, convex and uniformly bounded subset of C[I, E]
and AQ is bounded in norm. According to Propositions 1.6 and 1.7, AQ is relatively
weakly compact in C[I, E] implies AQ(t) is relatively weakly compact in E, for
each t € I.

Since all conditions of Theorem 1.5 are satisfied, then the operator A has at least one
fixed point z € @ and the nonlinear Stieltjes integral equation (2.5) has at least one
weak solution z € C[I, E]. O



92 A.M.A El-Sayed, W.G. El-Sayed and A.A.H. Abd EI-Mowla

3. Volterra integral equation of fractional order

In this section we show that the Volterra integral equation of fractional order

bt —s)ot
o) =p0)+ [ S
0 I'(a)
can be considered as a special case of the Volterra-Stieltjes integral equation (2.1),
where the integral is in the sense of weakly Riemann.
First, consider, as previously, that the function ¢(t,s) = g : A — R. Moreover, we
will assume that the function g satisfies the following condition

f(s,z(s)) ds, tel (3.7)

(vi’) For ty,te € I, t; < to, the function s — g(t2,s) — g(t1,s) is nonincreasing on
[0,21].

Now, we have the following lemmas which proved by Bana$ et al. [5].

Lemma 3.1. Under assumptions (m‘/) and (vii), for any fixred s € I, the function t —
g(t, 8) is nonincreasing on [s, 1].

Lemma 3.2. Under assumptions (iv), (vi ) and (vii), the function g satisfies as-
sumption (vi).

Consider the function g defined by
t* —(t—s)™

Na+1) (38)

g(t,s) =
Now, we show that the function g satisfies assumptions (iv), (v), (vi') and (vii).
Clearly that the function ¢ satisfies assumptions (iv) and (vii). Also we get

(t—s)o !

T(a) >0

dsg(t, s) =
for 0 < s < t. This implies that s — g(¢,s) is increasing on [0, ¢] for any fixed ¢t € I.
Thus the function ¢ satisfies assumption (v).
To show that ¢ satisfies assumption (vi ), let us fix arbitrary ¢1,ty € [0,7T], t; < to.
Then we get

G(s) = g(t2,s) — g(t1,s) = 1§ —t¢ — (ta —s5)* + (t1 — s)"’

P(a+1)
define on [0, #1]. Thus
R k) el G Bk M 1 B 1
@ () ') [(tg —s)lme (¢ — S)lfa]'

Hence G'(s) < 0 for s € [0,¢1). This means that g satisfies assumption (vi ). And the
function g satisfies assumptions (iv)-(vii) in Theorem 2.5.
Hence, the equation (3.7) can be written in the form

w@zMﬂ+Af@M@Mw@@
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And the equation (3.7) is a special case of the equation (2.5).
Now, we estimate the constants K, N(e) used in our proof. To see this, since the
function s — g(¢, s) is nondecreasing on [0, ¢] for any fixed t € I. Then we have

t o

S\:/Ogoz $) = g(t:1) = 9(1.0) = 9(t.) = £y
and
\/(g(tQ,S) —g(tl’s)) = t27 (tlasz)] [g(tQaSi—l) _g(tlasi—l)] |

(t2, si—1) — g(t1, si-1)] — [9(t2, si) — g(t1,8:)]}

i

= Ttl,tl) g(t2,t1)

= L g (- 1))
T T(a+1)tt 2 SR
Thus .
K:sup{\/g(ts):tEI}:L
S0 I'(a+1)
and .
N(©) =sup { \/ (g(tz,8) = gltr,8)) s ta,ta €1, b1 <ta, ta—t1 < ¢}
s=0
e et — 1)
ERNCE )
Since
ta
\/ g(ta,s) = gl(ta,t2) — g(t2, 1)
s=ty
A L S
T Tla+nt? P R
_ (2= t)"
Ma+1)"
Then

Q={zcClLE]:| o< Mo .

| (t2) — x(t1) [I<|| p(t2) — p(t1) | + [ 7 =5 [ +2(t2 — t1)°]}-

M
I'a+1)
Finally, we can formulate the following existence result concerning the fractional in-

tegral equation (3.7).

Theorem 3.3. Under the assumptions (i)-(iii), the fractional integral equation (3.7)
has at least one weak solution x € C[I, E].
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4. Fractional differential equations

In this section we establish existence results for the fractional differential equations
(1.1)-(1.2) and (1.3)-(1.4) in the reflexive Banach space E.
4.1. Weak solution

Consider the integral equation

x(t)z/o (t}(i)g_f(s,x(s)) ds, tel, (4.9)

where the integral is in the sense of weakly Riemann.

Lemma 4.1. Let o € (0,1). A function x is a weak solution of the fractional integral
equation (4.9) if and only if x is a solution of the problem (1.1)-(1.2).

Proof. Integrating (1.1)-(1.2) we obtain the integral equation (4.9). Operating
by rD® on (4.9) we obtain the problem (1.1)-(1.2). So the equivalent between (1.1)-
(1.2) and the integral equation (4.9) is proved and then the results follows from
Theorem 3.3. 0

4.2. Mild solution

Consider now the problem (1.3)-(1.4). According to Definitions 1.1 and 1.3, it is
suitable to rewrite the problem (1.3)-(1.4) in the integral equation

z(t) = xo Jr/o Ul_‘(i.):;f(s,x(s)) ds, tel. (4.10)

Definition 4.2. By the mild solution of the problem (1.3)-(1.4), we mean that the
function x € C[I, E] which satisfies the corresponding integral equation of (1.3)-(1.4)
which is (4.10).

Theorem 4.3. If (i)-(iii) are satisfied, then the problem (1.3)-(1.4) has at least one
mild solution x € C[I, EJ.

It is often the case that the problem (1.3)-(1.4) does not have a differentiable
solution yet does have a solution, in a mild sense.
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