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ABSTRACT: In the present paper we define some classes of meromor-
phic functions with fixed argument of coefficients. Next we obtain coeffi-
cient estimates, distortion theorems, integral means inequalities, the radii
of convexity and starlikeness and convolution properties for the defined
class of functions.
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1 Introduction
Let M denote the class of functions which are analytic in D = D(1), where
D(r)={2e€C:0<|z|<r} (re(0,1])

and let M* (k € Ny := {0,1,2,...}) denote the class of functions f € M of the form
1 o0

_ = ey D). 1

)=+ Y w (=€) )

Moreover, let M := M. Also, by Ty (0 € R) we denote the class of functions f € M
of the form

&) =243 jal (zeD). e
n=0

The class Ty is called the class of meromorphic functions with fixed argument of
coefficients. For # = 7 we obtain the class T of meromorphic functions with negative
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coefficients. Classes of functions with fixed argument of coefficients were considered
in [ 2 (3, ).
A function f € M is said to be convezr in D(r) if

2f"(2)
e > <0 (z€D(r)).

A function f € M is said to be starlike in D(r) if
2f'(2)
f(z)

Let B be a subclass of the class M. We define the radius of starlikeness of order
« and the radius of convezity of order « for the class B by

Re (1+

Re

<0 (z2€D(r)). (3)

R;,(B) = }1612 {sup{r € (0,1] : f is starlike in D(r)}},
RS(B) = JicnfB {sup{r € (0,1] : f is convex in D(r)}},
€
respectively.
Let functions f, F' be analytic in & := DU{0}. We say that [ is subordinate to

F, and write f(z) < F(z) (or simply f < F), if and only if there exists a function w
analytic in U, |w(z)| < |z| (2 € U), such that

fz) = F(w(z)) (z€U).

In particular, if F' is univalent in U, we have the following equivalence:

f(z) < F(z) <= f(0) = F(0) and f(U) C F(U).
For functions f,g € M of the form
flz) = Z anz" and g(z) = i bn2",
n=—1 n=—1
by f * g we denote the Hadamard product (or convolution) of f and g, defined by
(f*g)(2) = j;i anbp2" (2 €D).
n=—1

Let ¢ € M* be a given function of the form
1 o0
== 2" D; a, >0, n=Fkk+1,...). 4
o(2) Z—|—nz:;€o¢z (2z€D; a, >0, n + ) (4)

Assume that A, B are real parameters, —1 < A < B <1, (cosf <0 or B # 1).
By M¥ (¢; A, B) we denote the class of functions f € M* such that

1+ Az

20+ ) () < e 5)
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Now, we define the classes of functions with fixed argument of coefficients related
to the class M¥ (¢; A, B). Let us denote

M5 (95 A, B) == To N M"* (p; A, B), M (¢;A,B) := M (p; A, B).

In the present paper we obtain coefficient estimates, distortion theorems, inte-
gral means inequalities, and the radii of convexity and starlikeness for the class
ME (p; A, B). We also derive convolution properties for the class of functions.

2 Coefficient estimates

Before stating and proving coefficient estimates in the class M (¢; A, B) we need the
following lemma.

Lemma 1 [6] Let [ be a function of the form

f(Z) = Z a,z",
n=0

which is analytic in D. If f < g and g is convex univalent in U, then
lan| <1 (neN).
Theorem 1 If a function f of the form belongs to the class M (p; A, B), then
B—A

lan| < (n=0,1,...), (6)

n

The result is sharp.

Proof. Let a function f of the form belong to the class M (¢; A, B) and let us

put
g(z) = zlpxf)(2) -1 and h(z) = - —i—ZBz'

A-B
Then, by , we have g < h. Since the function g is given by

) an, .
g(z):ZA_Ba”Z +1
n=0

and the function h is convex univalent in U, by Lemma [I| we obtain

an

Thus we have @ The Equality in holds for the functions g,, of the form

gn(2) = h(z"T) =2"T 4 N b (n=0,1,...),
j=n-+2
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for some b; (j =n+2,n+3,...). Consequently, the equality in @ holds true for the
functions f, of the form

1 A-B . A-B ;
falz) = = + RSy —bj12 (n=0,1,...).

z o
" Jj=n+1 J

Theorem 2 If a function f of the form belongs to the class M5 (¢; A, B), then

> anlan| < 6(6; A, B), (8)
n=~k
where B_A
0(0; A, B) := — (9)

\/1—BQSin29—BCOSH'

Proof. Let a function f belong to the class M5 (¢; A, B). Then, by and the
definition of subordination, we have

14 Aw(z)

Z(SD*f)(Z)—HTw(Z),

where w(0) = 0 and |w(z)| <1 for z € U. Thus we obtain

|z (e f)(z) =1 <|Bz(p* f)(2) —A] (2 €D).
Hence, by , we have

Z anlan|z"| < |B — A+ Be'? Z anlan|2" T (2 € D). (10)
n==k n=k
Putting z =r (0 < r < 1), we find that
|w| < |B — A+ Bwe®|, (11)

where, for convenience,
w= Z Q||
n=~k
Since w is a real number, by we have
(1 - B)w? — [2B(B — A)coslw— (B — A)* < 0.

Solving this inequality with respect to w, we obtain

Z an\an\r""‘l < 6(6; A, B),
n=~k

which, upon letting » — 17, readily yields the assertion of Theorem 1. W
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Theorem 3 A function f of the form belongs to the class ME (p; A, B) if and
only if
- B-A
> o lan| < 118 (12)
n=k
Proof. By virtue of Theorem 1, we only need to show that the condition (12)) is

the sufficient condition. Let a function f of the form satisfy the condition (12]).
Then, in view of , it is sufficient to prove that

)
Z O‘n|an|zn+1
n=~k

Indeed, letting |z| = (0 < r < 1), we have
B—-A-B Z ozn\a"|z”+1

o0
Z ozn\a"|z”+1
n==k n=k

< (Z an|an|r"+1> — <B —A-B Z an|an|r"+1>
n=~k

n=k

o0
B-A-B Z Qa2

n==k

<0 (ze€D).

< (1+B)Zan‘an‘ —(B-4)<0,
n=~k

which implies that f € M~ (p;A,B). R
Theorem 2] readily yields
Corollary 1 If a function f of the form belongs to the class M’g (¢; A, B), then
0(0; A, B)
Qn

where §(0; A, B) is defined by @ The result is sharp for 8 = w. Then the functions
fn of the form

lan| < (n=kk+1,...), (13)

B-A

are the extremal functions.

3 Distortion theorems

From Theorem [2] we have the following lemma.

Lemma 2 Let a function f of the form belong to the class M’g (¢; A, B). If the
sequence {ay,} defined by satisfies the inequality

ap<a, (m=kk+1,...), (15)
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then
> 0(0; A, B)
n==k k
Moreover, if
nap <a, (k>1, n=kk+1,...), (16)
then
> ké(0; A, B)
Z nla,| < ———=.
n=k Xk

Theorem 4 Let a function f belong to the class ME (p; A, B) . If the sequence {a, }
defined by satisfies , then

1 T A 1 6(6;A B
LA k<24 OAB e cny.
r O T A
Moreover, if holds, then
1 ké(0;A,B) ., 1 ké(0;A,B)
T—Q—TT §|f/(2)|§ﬁ+Tr (Je]=r<1). (18)

The result is sharp for 8 = w, with the extremal function fi of the form .

Proof. Let a function f of the form (2)) belong to the class M5 (¢; A, B), |2| =7 <

1. Since
1~ [ 1 =
F) =[S+ anz"| < -+ lanlr" < =4 anl
n=~k n=~k n=~k
and
|  —  —
|f(Z)|: 7+6192anzn 27—2|an|r"27—2|an|,
z n=~k r n=~k r n=~k

then by Lemma [2] we have (L7)). Analogously we prove (18). W

4 Integral means inequalities

Due to Littlewood [7] we obtain integral means inequalities for the functions from the
class M5 (¢; A, B) .

Lemma 3 [7]. Let function f, g be analytic inU. If f < g, then

/|f(re“)|/\dtS/’g(re”)f)\dt 0<r<1, A>0). (19)
0 0
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Silverman [8] found that the function

g(z):z—% (z € D),

is often extremal over the family of functions with negative coefficients. He applied
this function to resolve integral means inequality, conjectured in [9] and settled in
[10], that holds true for all functions f with negative coefficients. In [I0] he also
proved his conjecture for some subclasses of 7.

Applying Lemma [3] and Theorem [2] we prove the following result.

Theorem 5 Let the sequence {a,} defined by satisfy the inequality . If f e
MY (; A, B), then

27
/yf(re“)ﬁdt < / g dt (0 <r <1, A>0), (20)
0
where A
g(z) = Ly (0004 B) (z € D).
z (7))

Proof.  For function f of the form (2)), the inequality is equivalent to the
following:

2m

/

0

A 2 A

dtg/'1+ei05(9;A’B)z dt.
Qo

o0
1+ei92 |an|zn+1

n=0

By Lemma [3] it suffices to show that

Nt 0; A, B
Z lan| 2" < Mz (21)
ag
n=0
Setting
o n
w(Z) = Z 6(92 B) anz + (Z S D)
n=0 7w

and using and Theorem [2[ we obtain

= < .
2 = ZMAB _|z|25MB|an| 2l (€D)

Since

Zan 1—M w(z) (z€D),

Qo

by definition od subordination we have and this completes the proof. W
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5 The radii of convexity and starlikeness

Theorem 6 If a function f belongs to the class M]g (p; A, B), k > 1, then f is
starlike in the disk D(r*), where

Cmf () 22
ne rlzgk(né(H,A,B)> (22)

and §(0, A, B), {ay} are defined by @D and , respectively. For 0 = m, the result is
sharp, that is
R* (Mﬁ (¢; A, B)) =r*.

Proof. A function f € M¥ of the form (2) is starlike in the disk D(r) if and only if
it satisfies the condition or if

OO0 < 1 (zeD(r)). (23)
Since
et 3 n an| 2" > n ap|[2["
S| n;c( + 1) |an| _ Ek( + 1) an] |2|
2f'(z) — f(2) 2 _ i i(n_l) lap| 2 9 f(n—l) |an| |2
n=k n=~k

putting |z| = r the condition be true if

oo

Zn|an|r"+1 <1 (24)

n=~k

By Theorem [2] we have
o0 an
2 4 5 on| <1,
2 545 " <
n=~k
Thus, the condition (24]) be true if

ntl o n — 1,...
nr = 30.4B) (n=kk+1,..),

that is, if

dn = kok+1
< | — =
r(né(@,A,B)) (n=kk+1,..)

It follows that each function f € M¥ (¢; A, B) is starlike in the disk D (r*), where r*
is defined by . For 8 = 7 the functions f,, of the form are extremal functions.
|
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Theorem 7 If a function f belongs to the class M (; A, B), then f is convex in
the disk D(r¢), where

. i Qp i
" sk <n25(9,A, B)>
and 0(0, A, B), {a,} are defined by @ and , respectively. For 0 = m, the result is

sharp, that is,
R (ML (A, B)) =

Proof. The proof is analogous to that of Theorem 4, and we omit the details. W

6 Cnonvolution properties

Let

1 e n 1 i3
§ " ) E bn n cD). 25
Z) = *Z—f-e k|a |Z g(Z) +e | ‘Z (Z ) ( )

We define modified Hadamard product for the functions f, g as follows:
g f—Zme " (D).

Theorem 8 Let f € M) (p;A,B) and g € Mj(y;C,D). Then f ® g €
ME (px; E, F), whenever

§(r, E,F) > 8(a, A, B)5(3,C, D). (26)

Proof. Let

1 oo
== " e D; >0, n=kk+1,..
—+ ) Bu" (€D B, >0, n=kk+1,.)

and let functions f,g of the form belong to the classes MF (¢; A, B) and
/\/lg (v; C, D), respectively. From Theorem [2[ we have

}:5 Wﬂ<1 E:éﬂCDﬂb“n

Thus, by we obtain

Oénﬁ anﬁ
E < g

—Za AB |a”|zaﬂ,01))|b|<1

Applying Theoremwe get f@ge ME(pxy; E,F). B
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Theorem 9 Let the sequence {a,} defined by satisfy the inequalities (15)).
frg € Mk (p;A,B), then f ® g € ME (¢;C, D), whenever

(D—C)ag > (1+D)[6(0, A, B)>. (27)

Proof. Let a functions f, g of the form belong to the class M¥ (¢; A, B). Then
by Theorem [2] we have

Zé’ |an|<1 25 |b|<1

Thus, by the Cauchy-Schwarz inequality we obtain

Z 50 A ) Vianb,| <1. (28)

We have to prove that

o0
Zan

Therefore, by it is sufficient to show that

|an | < 1.

1+D
7,/ >
D_c lmbnl = 3(0, A, B) [anbn| (n>2)

or equivalently

D-C
\/ < > 2).
lantnl < T D)0, A, 2P
From (28) we have

VIanba < 2048 s g
«

n

Consequently, we need only to prove that

D-C _ (6.4, B)
(1+D)3(6,A,B) =  an

(n>2),

and this inequality follows from ) and . |
We note that for functions f € ./\/lk (p;A,B) and g € ME__ (4;C, D) we have
f*xg=f®g. Thus from Theorem [§| obtain following corollary.

Corollary 2 If f € ME(p;A,B) and g € ME__ (¥;C,D), then f x g €
ME (@ *4p; E,F), whenever

o(m, B, F) > (o, A, B)d(m — o, C, D).

Putting § = 7 in Theorem [J] we obtain following corollary.
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Corollary 3 Let the sequence {c, } defined by ([{d) satisfy (15). If f.g € ME (¢; A, B),
then f ® g € ME (p;C, D), whenever

(D—-C)(1+B)*ap> (1+D)(B—A).
Putting C = A and D = B in Corollary [3] we obtain following corollary.

Corollary 4 Let the sequence {ay, } defined by satisfy . If f,g € ME(¢;A,B),
then f ® g € M~ (¢; A, B) , whenever
S B-A
w=97g"

Since for « = § = m, E = A and F = B the condition is true, then from
Theorem [8| we have following corollary.

Corollary 5 If f € ME (¢; A, B) and g € Mk (4;C, D), then

f®ge ME(pxy; A, B)NnME (oxy;C, D).
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