JMA No 38, pp 5-13 (2015)

Starlikeness and convexity of certain integral operators defined by convolution

Jyoti Aggarwal and Rachana Mathur

ABSTRACT: We define two new general integral operators for certain analytic functions in the unit disc \mathcal{U} and give some sufficient conditions for these integral operators on some subclasses of analytic functions.

AMS Subject Classification: 30C45

Keywords and Phrases: Multivalent functions, Starlike Functions, Convex Functions, Convolution

1 Introduction

Let $\mathcal{A}_{p}(n)$ denote the class of all functions of the form

$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k (p, n \in N = \{1, 2, 3...\}).$$
 (1.1)

which is analytic in open unit disc $\mathcal{U} = \{z \in \mathbb{C} | |z| < 1\}$. In particular, we set

$$\mathcal{A}_p(1) = \mathcal{A}_p, \mathcal{A}_1(1) = \mathcal{A}_1 := \mathcal{A}.$$

If $f \in \mathcal{A}_p(n)$ is given by (1.1) and $g \in \mathcal{A}_p(n)$ is given by

$$g(z) = z^{p} + \sum_{k=p+n}^{\infty} b_{k} z^{k} (p, n \in N = \{1, 2, 3...\}).$$
 (1.2)

then the Hadamard product (or convolution) f * g of f and g is given by

$$(f * g)(z) = z^p + \sum_{k=p+n}^{\infty} a_k b_k z^k = (g * f)(z).$$
 (1.3)

We observe that several known operators are deducible from the convolutions. That is, for various choices of g in (1.3), we obtain some interesting operators. For example, for functions $f \in \mathcal{A}_p(n)$ and the function g is defined by

$$g(z) = z^p + \sum_{k=p+n}^{\infty} \psi_{k,m}(\alpha, \lambda, l, p) z^k \quad (m \in N_0 = N \cup \{0\})$$
 (1.4)

where

$$\psi_{k,m}(\alpha,\lambda,l,p) = \left\lceil \frac{\Gamma(k+1)\Gamma(p-\alpha+1)}{\Gamma(p+1)\Gamma(k-\alpha+1)}.\frac{p+\lambda(k-p)+l}{p+l} \right\rceil^m.$$

The convolution (1.3) with the function g is defined by (1.4) gives an operator studied by Bulut ([1]).

$$(f * g)(z) = D_{\lambda,l,p}^{m,\alpha} f(z)$$

Using convolution we introduce the new classes $\mathcal{US}_{a}^{p}(\delta,\beta,b)$ and $\mathcal{UK}_{a}^{p}(\delta,\beta,b)$ as follows

Definition 1.1 A functions $f \in \mathcal{A}_p(n)$ is in the class $\mathcal{US}_g^p(\delta, \beta, b)$ if and only if f satisfies

$$\operatorname{Re}\left\{p + \frac{1}{b}\left(\frac{z(f*g)'(z)}{(f*g)(z)} - p\right)\right\} > \delta \left|\frac{1}{b}\left(\frac{z(f*g)'(z)}{(f*g)(z)} - p\right)\right| + \beta, \tag{1.5}$$

where $z \in \mathcal{U}, b \in \mathbb{C} - \{0\}, \delta \ge 0, 0 \le \beta < p$.

Definition 1.2 A functions $f \in \mathcal{A}_p(n)$ is in the class $\mathcal{US}_g^p(\delta, \beta, b)$ if and only if f satisfies

$$\operatorname{Re}\left\{p + \frac{1}{b}\left(1 + \frac{z(f*g)''(z)}{(f*g)'(z)} - p\right)\right\} > \delta \left|\frac{1}{b}\left(1 + \frac{z(f*g)''(z)}{(f*g)'(z)} - p\right)\right| + \beta, \quad (1.6)$$

where $z \in \mathcal{U}, b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$.

Note that

$$f \in \mathcal{UK}_g^p(\delta, \beta, b) \Longleftrightarrow \frac{zf'(z)}{p} \in \mathcal{US}_g^p(\delta, \beta, b).$$

Remark 1.1 (i) For $\delta = 0$, we have

$$\mathcal{UK}_{g}^{p}(0,\beta,b) = \mathcal{K}_{g}^{p}(\beta,b)$$

$$\mathcal{US}_{g}^{p}(0,\beta,b) = \mathcal{S}_{g}^{p}(\beta,b)$$

(ii) For $\delta = 0$ and $\beta = 0$

$$\mathcal{UK}_g^p(0,0,b) = \mathcal{K}_g^p(b)$$

$$\mathcal{US}_g^p(0,0,b) = \mathcal{S}_g^p(b)$$

(iii) For $\delta = 0$, $\beta = 0$ and b = 1

$$\mathcal{UK}_g^p(0,0,b) = \mathcal{K}_g^p$$
$$\mathcal{US}_g^p(0,0,b) = \mathcal{S}_g^p$$

(iv) For $(f_j * g)(z) = D_{\lambda,l,p}^{m,\alpha} f_j(z)$, we have two classes $\mathcal{UK}_{\alpha,\lambda,l}^{m,j,p,n}(\delta_j,\beta_j,b)$ and $\mathcal{US}_{\alpha,\lambda,l}^{m,j,p,n}(\delta_j,\beta_j,b)$ which is introduced by Guney and Bulut [1].

Definition 1.3 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. One defines the following general integral operators:

$$\mathcal{I}_{g}^{p,\eta,m,k}: \mathcal{A}_{p}(n)^{\eta} \to \mathcal{A}_{p}(n)
\mathcal{G}_{q}^{p,\eta,m,k}: \mathcal{A}_{p}(n)^{\eta} \to \mathcal{A}_{p}(n)$$
(1.7)

such that

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_{j} * g)(t)}{t^{p}} \right)^{k_{j}} dt,
\mathcal{G}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_{j} * g)'(t)}{pt^{p-1}} \right)^{k_{j}} dt,$$
(1.8)

where $z \in \mathcal{U}$, $f_j, g \in \mathcal{A}_p(n), 1 \leq j \leq \eta$.

Remark 1.2 (i) For $\eta = 1, m_1 = m, k_1 = k$, and $f_1 = f$, we have the new two new integral operators

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \left(\frac{(f_{j}*g)(t)}{t^{p}}\right)^{k_{j}} dt,
\mathcal{G}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \left(\frac{(f_{j}*g)'(t)}{pt^{p-1}}\right)^{k_{j}} dt, \tag{1.9}$$

(ii) For $(f_j * g)(z) = D_{\lambda,l,p}^{m,\alpha} f_j(z)$, we have

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \prod_{j=1}^{\eta} \left(\frac{D_{\lambda,l,p}^{m,\alpha} f_{j}(t)}{t^{p}} \right)^{k_{j}} dt,
\mathcal{G}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \prod_{j=1}^{\eta} \left(\frac{D_{\lambda,l,p}^{m,\alpha} f_{j}(t)'(t)}{pt^{p-1}} \right)^{k_{j}} dt,$$
(1.10)

 $These \ operator \ were \ introduced \ by \ Bulut \ [].$

(iii) If we take $g(z) = z^p/(1-z)$, the we have

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_{j})(t)}{t^{p}} \right)^{k_{j}} dt,
\mathcal{G}_{g}^{p,\eta,m,k}(z) = \int_{0}^{z} pt^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_{j})'(t)}{pt^{p-1}} \right)^{k_{j}} dt,$$
(1.11)

These two operators were introduced by Frasin [3].

2 Sufficient Conditions for $\mathcal{I}_g^{p,\eta,m,k}(z)$

Theorem 2.1 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{US}_g^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{2.1}$$

then the integral operator $\mathcal{I}_q^{p,\eta,m,k}(z)$, defined by (1.8), is in the class $\mathcal{K}_q^p(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

Proof. From the definition (1.8), we observe that $\mathcal{I}_g^{p,\eta,m,k}(z) \in \mathcal{A}_p(n)$. We can easy to see that

$$(\mathcal{I}^{p,\eta,m,k}(z))' = pz^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_j * g)(z)}{z^p} \right)^{k_j}.$$
 (2.2)

Differentiating (2.2) logarithmically and multiplying by 'z', we obtain

$$\frac{z\left(\mathcal{I}^{p,\eta,m,k}(z)\right)''}{\left(\mathcal{I}^{p,\eta,m,k}(z)\right)'} = p - 1 + \sum_{j=1}^{\eta} k_j \left(\frac{z\left((f_j * g)(z)\right)'}{(f_j * g)(z)} - p\right)$$
(2.3)

or equivalently

$$1 + \frac{z \left(\mathcal{I}^{p,\eta,m,k}(z) \right)''}{\left(\mathcal{I}^{p,\eta,m,k}(z) \right)'} - p = \sum_{j=1}^{\eta} k_j \left(\frac{z \left((f_j * g)(z) \right)'}{(f_j * g)(z)} - p \right)$$
 (2.4)

Then, by multiplying (2.4) with '1/b', we have

$$\frac{1}{b}\left(1 + \frac{z\left(\mathcal{I}^{p,\eta,m,k}(z)\right)''}{\left(\mathcal{I}^{p,\eta,m,k}(z)\right)'} - p\right) = \sum_{j=1}^{\eta} k_j \frac{1}{b} \left(\frac{z\left((f_j * g)(z)\right)'}{(f_j * g)(z)} - p\right)$$
(2.5)

or

$$p + \frac{1}{b} \left(1 + \frac{z \left(\mathcal{I}^{p,\eta,m,k}(z) \right)''}{\left(\mathcal{I}^{p,\eta,m,k}(z) \right)'} - p \right)$$

$$= p + \sum_{j=1}^{\eta} k_j \frac{1}{b} \left(\frac{z \left((f_j * g)(z) \right)'}{(f_j * g)(z)} - p + p - p \sum_{j=1}^{\eta} k_j \right)$$
(2.6)

Since $f_j \in \mathcal{US}_g^p(\delta_j, \beta_j, b)$ $(1 \le j \le \eta)$, we get

$$\operatorname{Re}\left\{p + \frac{1}{b}\left(1 + \frac{z\left(\mathcal{I}^{p,\eta,m,k}(z)\right)''}{\left(\mathcal{I}^{p,\eta,m,k}(z)\right)'} - p\right)\right\}$$

$$= p + \sum_{j=1}^{\eta} k_{j} \operatorname{Re}\left\{\frac{1}{b}\left(\frac{z\left((f_{j} * g)(z)\right)'}{(f_{j} * g)(z)} - p\right)\right\} + p - \sum_{j=1}^{\eta} p k_{j}$$

$$> \sum_{j=1}^{\eta} k_{j} \delta_{j} \left|\frac{1}{b}\left(\frac{z\left((f_{j} * g)(z)\right)'}{(f_{j} * g)(z)} - p\right)\right| + p + \sum_{j=1}^{\eta} k_{j}(\beta_{j} - p).$$
(2.7)

Since

$$\sum_{j=1}^{\eta} k_j \delta_j \left| \frac{1}{b} \left(\frac{z((f_j * g)(z))'}{(f_j * g)(z)} - p \right) \right| > 0$$

because the integral operator $\mathcal{I}_g^{p,\eta,m,k}(z)$, defined by (1.8), is in the class $\mathcal{K}_g^p(\tau,b)$ with

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

3 Sufficient Conditions for $\mathcal{G}_{g}^{p,\eta,m,k}(z)$

Theorem 3.1 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{US}_g^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{3.1}$$

then the integral operator $\mathcal{G}_g^{p,\eta,m,k}(z)$, defined by (1.8), is in the class $\mathcal{K}_g^p(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

Proof. From the definition (1.8), we observe that $\mathcal{I}_g^{p,\eta,m,k}(z) \in \mathcal{A}_p(n)$. We can easy to see that

$$\left(\mathcal{G}^{p,\eta,m,k}(z)\right)' = pz^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_j * g)'(z)}{pz^{p-1}}\right)^{k_j}.$$
 (3.2)

Differentiating (3.2) logarithmically and multiplying by 'z', we obtain

$$\frac{z\left(\mathcal{G}^{p,\eta,m,k}(z)\right)''}{\left(\mathcal{G}^{p,\eta,m,k}(z)\right)'} = p - 1 + \sum_{j=1}^{\eta} k_j \left(\frac{z\left((f_j * g)(z)\right)''}{(f_j * g)'(z)} + 1 - p\right)$$
(3.3)

or equivalently

$$1 + \frac{z \left(\mathcal{G}^{p,\eta,m,k}(z) \right)''}{\left(\mathcal{G}^{p,\eta,m,k}(z) \right)'} - p = \sum_{j=1}^{\eta} k_j \left(\frac{z \left((f_j * g)(z) \right)''}{\left((f_j * g)(z) \right)'} + 1 - p \right)$$
(3.4)

Then, by multiplying (3.4) with '1/b', we have

$$\frac{1}{b}\left(1 + \frac{z\left(\mathcal{G}^{p,\eta,m,k}(z)\right)''}{\left(\mathcal{G}^{p,\eta,m,k}(z)\right)'} - p\right) = \sum_{j=1}^{\eta} k_j \frac{1}{b} \left(\frac{z\left((f_j * g)(z)\right)''}{(f_j * g)'(z)} + 1 - p\right)$$
(3.5)

or

$$p + \frac{1}{b} \left(\frac{z \left(\mathcal{G}^{p,\eta,m,k}(z) \right)''}{\left(\mathcal{G}^{p,\eta,m,k}(z) \right)'} + 1 - p \right) = p + \sum_{j=1}^{\eta} k_j \frac{1}{b} \left(\frac{z \left((f_j * g)(z) \right)''}{(f_j * g)'(z)} + 1 - p + p - p \sum_{j=1}^{\eta} k_j \right)$$
(3.6)

Since $f_j \in \mathcal{UK}_g^p(\delta_j, \beta_j, b) \ (1 \leq j \leq \eta)$, we get

$$\operatorname{Re}\left\{p + \frac{1}{b}\left(1 + \frac{z(\mathcal{G}^{p,\eta,m,k}(z))''}{(\mathcal{G}^{p,\eta,m,k}(z))'} - p\right)\right\}$$

$$= p + \sum_{j=1}^{\eta} k_{j} \operatorname{Re}\left\{\frac{1}{b}\left(\frac{z((f_{j} * g)(z))''}{(f_{j} * g)'(z)} + 1 - p\right)\right\} + p - \sum_{j=1}^{\eta} pk_{j} + p + \sum_{j=1}^{\eta} k_{j}(\beta_{j} - p).$$

$$> \sum_{j=1}^{\eta} k_{j} \delta_{j} \left|\frac{1}{b}\left(\frac{z((f_{j} * g)(z))''}{(f_{j} * g)'(z)} + 1 - p\right)\right| + p + \sum_{j=1}^{\eta} k_{j}(\beta_{j} - p).$$
(3.7)

Since

$$\sum_{j=1}^{\eta} k_j \delta_j \left| \frac{1}{b} \left(\frac{z((f_j * g)(z))^n}{(f_j * g)'(z)} + 1 - p \right) \right| > 0$$

because the integral operator $\mathcal{G}_g^{p,\eta,m,k}(z)$, defined by (1.8), is in the class $\mathcal{K}_g^p(\tau,b)$ with

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

4 Corollaries and Consequences

For $\eta = 1, m_1 = m, k_1 = k$, and $f_1 = f$, we have

Corollary 4.1 Let $\eta \in N, m \in N_0^{\eta}$ and $k \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f \in \mathcal{US}_q^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + k(\beta - p) < p,\tag{4.1}$$

then the integral operator $\mathcal{I}_{q}^{p,\eta,m,k}(z)$ is in the class $\mathcal{K}_{q}^{p}(\tau,b)$ where

$$\tau = p + k(\beta - p).$$

Corollary 4.2 Let $\eta \in N, m \in N_0^{\eta}$ and $k \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f \in \mathcal{US}_g^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + k(\beta - p) < p,\tag{4.2}$$

then the integral operator $\mathcal{G}_{q}^{p,\eta,m,k}(z)$ is in the class $\mathcal{K}_{q}^{p}(\tau,b)$ where

$$\tau = p + k(\beta - p).$$

For $(f_j * g)(z) = D_{\lambda,l,p}^{m,\alpha} f_j(z)$, we have

Corollary 4.3 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{US}_{\alpha, \lambda, l}^{m, j, p, n}(\delta_j, \beta_j, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.3}$$

then the integral operator $\mathcal{I}_{p,\eta,m,k}(z)$ is in the class $\mathcal{K}^{p,n}(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

Corollary 4.4 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $\mathcal{UK}_{\alpha, \lambda, l}^{m, j, p, n}(\delta_j, \beta_j, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.4}$$

then the integral operator $\mathcal{G}_{p,\eta,m,k}(z)$ is in the class $\mathcal{K}^{p,n}(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

which are known results obtained by Guney and Bulut [2]. Further, if put p=1, we have

Corollary 4.5 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < 1$, and $f_j \in \mathcal{US}_g^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le 1 + \sum_{i=1}^{\eta} k_j (\beta_j - 1) < 1, \tag{4.5}$$

then the integral operator $\mathcal{I}_{q}^{1,\eta,m,k}(z)$ is in the class $\mathcal{K}_{q}^{1}(\tau,b)$ where

$$\tau = 1 + \sum_{j=1}^{\eta} k_j (\beta_j - 1).$$

Corollary 4.6 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < 1$, and $f_j \in \mathcal{US}_g^1(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le 1 + \sum_{j=1}^{\eta} k_j (\beta_j - 1) < 1, \tag{4.6}$$

then the integral operator $\mathcal{G}_q^{1,\eta,m,k}(z)$ is in the class $\mathcal{K}_q^1(\tau,b)$ where

$$\tau = 1 + \sum_{j=1}^{\eta} k_j (\beta_j - 1).$$

Upon setting $g(z) = z^p/(1-z)$, we have

Corollary 4.7 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{US}^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.7}$$

then the integral operator $\mathcal{G}^{p,\eta,m,k}(z)$ is in the class $\mathcal{K}^p(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

Corollary 4.8 Let $\eta \in N, m = (m_1, ..., m_\eta) \in N_0^{\eta}$ and $k = (k_1, ..., k_\eta) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{US}^p(\delta, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.8}$$

then the integral operator $\mathcal{G}^{p,\eta,m,k}(z)$ is in the class $\mathcal{K}^p(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

Upon setting $g(z) = z^p/(1-z)$ and $\delta = 0$, we have

Corollary 4.9 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, 0 \le \beta < p$, and $f_j \in \mathcal{US}^p(0, \beta, b)$ for $1 \le j \le \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.9}$$

then the integral operator $\mathcal{G}^{p,\eta,m,k}(z)$ is in the class $\mathcal{K}^p(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

Corollary 4.10 Let $\eta \in N, m = (m_1, ..., m_{\eta}) \in N_0^{\eta}$ and $k = (k_1, ..., k_{\eta}) \in R_+^{\eta}$. Also let $b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{US}^p(0, \beta, b)$ for $1 \leq j \leq \eta$. If

$$0 \le p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.10}$$

then the integral operator $\mathcal{G}^{p,\eta,m,k}(z)$ is in the class $\mathcal{K}^p(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).$$

References

- [1] S. Bulut, The generalization of the generalized Al-Oboudi differential operator, Applied Mathematics and Computation, vol. 215, no. 4, pp. 14481455, 2009.
- [2] H. O. Guney and S. Bulut, Convexity and Spirallikeness Conditions for Two New General Integral Operators, Journal of Mathematics, Volume 2013, Article ID 841837, 8 pages.
- [3] B. A. Frasin, New general integral operators of p-valent functions, Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 4, article 109, p. 9, 2009.

DOI: 10.7862/rf.2015.1

Jyoti Aggarwal - corresponding author

email: maths.jyoti86@gmail.com

Rachana Mathur

email: rachnamathur@rediffmail.com

Department of Mathematics, Govt. Dungar (P.G.) College, Bikaner, India

Received 28.06.2014