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Abstract: In this paper we introduce the concept of bounded ϕ-
variation function, in the sense of Riesz, de�ned in a rectangle Iba[a, b] ×
[a, b] ⊂ R2. We prove that the linear space BV Rϕ (Iba) generated by the

class V Rϕ (Iba) of all ϕ-bounded variation functions is a Banach algebra.
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operator acting in the space BV Rϕ (Iba) to be globally Lipschitz.
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1. Introduction

In 1881, C. Jordan in [9], introduced the notion of bounded variation function such
as it is known today. With the years this concept was generalized in several ways,
depending on its usefulness in the context of some theories. In 1910, F. Riesz in
[16], de�ned the concept of p� bounded variation function, with 1 < p <∞, to show

that the dual space of Lp[a, b] is Lq[a, b] (
1

p
+

1

q
= 1). Moreover, he proved that

these functions are absolutely continuous with derivatives in the space Lp[a, b] (Riesz
lemma).

In 1937 L. C. Young [19] considered the set Φ of all nondecreasing and continues
functions ϕ : [0,+∞) −→ [0,+∞) with ϕ(0) = 0 and ϕ(t) −→ +∞ if t −→ +∞ and
generalized the work of Wiener [18].

In 1953 Yu. Medved'ev (see [13]), generalized the concept of bounded variation in
the Riesz sense to a class of ϕ-bounded variation functions.

Subsequently, V.V. Chistyakov reconsidered in [4] the works of Vitali (1904) and
Hardy (1905) presenting the total bounded variation in a rectangle Iba of R2. Also,
he proved that the class of total bounded variation functions BV (Iba;R) is a Banach
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algebra endowed with the norm ‖f‖ = |f(a)| + TV (f ; Iba), for f ∈ BV (Iba;R) and
‖f · g‖ ≤ 4‖f‖ · ‖g‖ with f(a) = f(a1, a2) and TV (Iba;R) = V[a1,b1](f) + V[a2,b2](f) +
VIba(f). Furthermore, he characterized the composition operator (Nemytskii) on these
spaces satisfying the global Lipschitz condition.

In this paper we introduce the concept of bounded ϕ-variation function in the
sense of Riesz, de�ned on the rectangle Iba = [a, b] × [a, b] ⊂ R2 and we prove that
the linear space BV Rϕ (Iba) generated by the class V Rϕ (Iba) of all ϕ-bounded variation
functions is a Banach algebra. Moreover, we give necessary and su�cient conditions
for the Nemytskii operator acting in the space BV Rϕ (Iba) to be globally Lipschitz.

2. ϕ�total bounded variation in the sense of Riesz

In this section we introduce the concept of ϕ�total bounded variation in the sense of
Riesz, and we prove that the class of such functions is a linear space.
Following the de�nition of ϕ�bounded variation in the sense of Riesz given in [13]
and the generalization the total bounded variation in the Hardy spaces given in [4],
we introduce the notion of ϕ�bounded variation in the sense of Riesz for functions f
de�ned on the rectangle Iba ⊂ R2.

Let us introduce the following notation: ∆sj = sj − sj−1, ∆ti = ti − ti−1 and

∆10f(ti, sj) = f(ti, sj)− f(ti−1, sj),

∆01f(ti, sj) = f(ti, sj)− f(ti, sj−1),

∆11f(ti, sj) = f(ti−1, sj−1) + f(ti, sj)− f(ti−1, sj)− f(ti, sj−1).

Assume that ϕ is a �xed function in the class Φ (see Introduction).

De�nition 2.1. The ϕ�total bounded variation in the sense of Riesz is de�ned as
follows:

(a) Let x2 ∈ [a2, b2]. Consider the function f(·, x2) : [a1, b1] × {x2} −→ R. The
ϕ�variation in the sense of Riesz of the function f(·, x2) of one variable de�ned
by f(·, x2)(t) = f(t, x2), t ∈ [a1, b1], on the interval [x1, y1], is the quantity

V Rϕ,[x1, y1](f(·, x2)) := sup
Π1

m∑
i=1

ϕ

[
|∆10f(ti, x2)|
|∆ti|

]
|∆ti|, (1)

where the supremum is taken over all partitions Π1 = {ti}mi=0 (m ∈ N) of the
interval [x1, y1].

(b) A similar applies to the variation Vϕ,[x2,y2] if x1 ∈ [a1, b1] is �xed and [x2, y2] is
a subinterval of [a2, b2]. That is, for the function f(x1, ·) : {x1}× [a2, b2] −→ R
we de�ne ϕ�variation in the sense Riesz, as the quantity

V Rϕ,[x2, y2](f(x1, ·)) := sup
Π2

n∑
j=1

ϕ

[
|∆01f(x1, sj)|
|∆sj |

]
|∆sj |, (2)
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where the supremum is taken over the set of all partitions Π2 = {sj}nj=0 (n ∈ N)
of the interval [x2, y2].

(c) The ϕ�bidimensional variation in the sense of Riesz is de�ned by the formula

V Rϕ (f) := sup
Π1,Π2

m∑
i=1

n∑
j=1

ϕ

[
|∆11f(ti, sj)|
|∆ti||∆sj |

]
· |∆ti||∆sj |, (3)

where the supremum is taken over the set of all partitions (Π1,Π2) of the rect-
angle Iba ⊂ R2.

(d) The ϕ�total bounded variation in the sense of Riesz of the function f : Iba −→ R
is denoted by TV Rϕ (f) and is de�ned as follows:

TV Rϕ (f) = TV Rϕ (f, Iba) := V Rϕ,[a1,b1](f(·, a2)) + V Rϕ,[a2,b2](f(a1, ·)) + V Rϕ (f), (4)

provided TV Rϕ (f) <∞.

The class of all the functions f : Iba −→ R having ϕ�total bounded variation in the
sense of Riesz is denoted by V Rϕ (Iba). Other words, we have:

V Rϕ (Iba) = V Rϕ (Iba, R) := {f : Iba −→ R : TV Rϕ (f) <∞}. (5)

Example 1. Let f : Iba −→ R be de�ned by the formula f(x1, x2) = (ax1 + bx2)2,
where a, b ∈ R. Then, it is easily seen that f ∈ V Rϕ (Iba).

Now, we give the de�nition allowing us to characterize ϕ-functions.

De�nition 2.2. Let ϕ ∈ Φ. If lim
t→∞

sup
ϕ(t)

t
= ∞, then we say that ϕ satis�es the

condition ∞1.

Theorem 2.3. Assume that ϕ ∈ Φ and f : Iba −→ R. Then:

(a) TV Rϕ (f) ≥ 0 for all functions f ∈ V Rϕ (Iba).

(b) The function TV Rϕ (·) : V Rϕ (Iba) −→ R is even, that is TV Rϕ (f) = TV Rϕ (−f).

(c) If f ∈ V Rϕ (Iba), then f is bounded in Iba.

(d) TV Rϕ (f) = 0 if and only if f = const.

(e) ϕ is convex if and only if TV Rϕ (·) is convex.

(f) V Rϕ (Iba) ⊂ BV (Iba).

(g) If lim
t→∞

ϕ(t)

t
is �nite then V Rϕ (Iba) = BV (Iba).
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Proof. In order to verify part (a), it is su�cient to use the de�nition of bounded
variation. To prove part (b) we used the properties of the function ϕ and the fact
that the absolute value function | · | is even.
(c) It can be done by contradiction.
(d) The �rst implication can be easily veri�ed by contradiction, while the converse
one is trivial.
(e) Suppose that ϕ is convex and f, g : Iba −→ R, α, β ∈ [0, 1] are such that α+β = 1.
Given the partitions Π1 : a1 = t0 < · · · < tm = b1 and Π2 : a2 = s0 < · · · < sn = b2
of the intervals [a1, b1] and [a2, b2], respectively. Then we have:

αTV Rϕ (f) + βTV Rϕ (g)

= αV Rϕ,[a1, b1](f) + αV Rϕ,[a2, b2](f) + αV Rϕ (f) + βV Rϕ,[a1, b1](g)

+βV Rϕ,[a2, b2](g) + βV Rϕ (g)

= sup
Π1

m∑
i=1

[
αϕ

[
|∆10f(ti, x2)|
|∆ti|

]
+ βϕ

[
|∆10g(ti, x2)|
|∆ti|

]]
|∆ti|

+ sup
Π2

n∑
j=1

[
αϕ

[
|∆01f(x1, sj)|
|∆sj |

]
+ βϕ

[
|∆01g(x1, sj)|
|∆sj |

]]
|∆sj |

+ sup
Π1,Π2

m∑
i=1

n∑
j=1

[
αϕ

[
|∆11f(ti, sj)|
|∆ti||∆sj |

]
+ βϕ

[
|∆11g(ti, sj)|
|∆ti||∆sj |

]]
|∆ti||∆sj |.

Hence, taking into account that ϕ is convex and nondecreasing, we get

αTV Rϕ (f) + βTV Rϕ (g)

≥ sup
Π1

m∑
i=1

ϕ

[
|∆10(αf + βg)(ti, x2)|

|∆ti|

]
|∆ti|

+ sup
Π2

n∑
j=1

ϕ

[
|∆01(αf + βg)(x1, sj)|

|∆sj |

]
|∆sj |

+ sup
Π1,Π2

m∑
i=1

n∑
j=1

ϕ

[
|∆11(αf + βg)(ti, sj)|

|∆ti||∆sj |

]
· |∆ti||∆sj |

= V Rϕ,[a1, b1](αf + βg) + V Rϕ,[a2, b2](αf + βg) + V Rϕ (αf + βg)

= TV Rϕ (αf + βg).

Therefore,
TV Rϕ (αf + βg) ≤ αTV Rϕ (f) + βTV Rϕ (g).
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Now, suppose that TV Rϕ (·) is convex and let x, y ∈ [0,+∞). Further, let f, g :

Iba −→ R be functions de�ned by the formulas:

f(t, s) = x · (t− s) and g(t, s) = y · (t− s), t ∈ [a1, b1], s ∈ [a2, b2].

Take α, β ∈ [0, 1] such that α+ β = 1. Then we obtain:

V Rϕ,[a1, b1](αf + βg) = sup
Π1

m∑
i=1

ϕ

[
|∆10(αf + βg)(ti, x2)|

|∆ti|

]
· |∆ti|

= sup
Π1

m∑
i=1

ϕ

[
|(αx+ βy)|∆ti|

|∆ti|

]
· |∆ti|

= ϕ(αx+ βy) · |b1 − a1|.

Hence we get

V Rϕ,[a1, b1](αf + βg) = ϕ(αx+ βy) · |b1 − a1|.

In a similar way, we obtain

V Rϕ,[a2, b2](αf + βg) = ϕ(αx+ βy) · |b2 − a2|.

Next, we have the following equality:

V Rϕ,[a1, b1](αf + βg) = sup
Π1,Π2

m∑
i=1

n∑
j=1

ϕ

[
|∆11(αf + βg)(ti, sj))|

|∆ti||∆sj |

]
|∆ti||∆sj | = 0.

In addition, we obtain

V Rϕ,[a1, b1](f) = sup
Π1

m∑
i=1

ϕ

[
|∆10f(ti, x2)|

∆ti

]
· |∆ti| = ϕ(x)|b1 − a1|.

Further observe that, V Rϕ,[a2, b2](f) = ϕ(y)|b2 − a2| and V Rϕ (f) = 0. Similarly,

V Rϕ,[a1, b1](g) = ϕ(x)|b1− a1|, V Rϕ,[a2, b2](g) = ϕ(y)|b2− a2| and V Rϕ (g) = 0. Taking into

account the convexity of TV Rϕ , we obtain:

ϕ(αx+ βy)
[
|b1 − a1|+ |b2 − a2|

]
TV Rϕ (αf + βg)

≤
(
αϕ(x) + βϕ(y)

)
·
[
|b1 − a1|+ |b2 − a2|

]
.

Since bi − ai 6= 0; for i = 1, 2 we have

ϕ(αx+ βy) ≤ αϕ(x) + βϕ(y) α, β ∈ [0, 1], α+ β = 1.

Therefore, ϕ(·) is convex.
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(f) Consider f ∈ V Rϕ (Iba) and take the partitions Π1 : a1 = t0 < ... < tm = b1,
Π2 : a2 = s0 < ... < sn = b2 of the intervals [a1, b1] and [a2, b2], respectively. Let us
put:

σ1 :=

{
i :

(
| ∆10f(ti, x2) |
| ∆ti |

)
≤ 1

}
,

σ2 :=

{
j :

(
| ∆01f(x1, sj) |
| ∆sj |

)
≤ 1

}
,

σ3 :=

{
(i, j) :

(
| ∆11f(ti, sj) |
| ∆sj || ∆ti |

)
≤ 1

}
.

Then, we get the following estimate

m∑
i=1

| ∆10f(ti, x2) |
m∑
i=1

(
| ∆10f(ti, x2) |
| ∆ti |

)
| ∆ti |

≤ |b1 − a1|+
1

ϕ(1)

m∑
i=1

ϕ

[
| ∆10f(ti, x2) |
| ∆ti |

]
| ∆ti | .

Hence we get

V[a1, b1](f) ≤ |b1 − a1|+
1

ϕ(1)
V Rϕ,[a1, b1](f) <∞.

This allows us to deduce that V Rϕ,[a1, b1](f) is �nite. Proceeding in a similar way we

obtain that V Rϕ,[a2, b2](f) is also �nite. So, we only have to verify that V Rϕ (f, Iba) is

�nite to conclude that V Rϕ (Iba) ⊂ BV (Iba). In fact, we have:

m∑
i=1

n∑
j=1

| ∆11f(ti, sj) |

≤
∑
i,j∈σ3

| ∆ti || ∆sj | +
∑
i,j /∈σ3

ϕ

(
| ∆11f(ti, sj) |
| ∆ti || ∆sj |

)
| ∆ti || ∆sj |

VIba(f) ≤ A(Iba) +
1

ϕ(1)
V Rϕ (f),

where A(Iba) is the area of the rectangle Iba. Hence, we infer that

TV (f) = V[a1, b1](f) + V[a2, b2](f) + VIba(f)

≤ |b1 − a1|+
1

ϕ(1)
V Rϕ,[a1, b1](f) + |b2 − a2|+

1

ϕ(1)
V Rϕ,[a2, b2](f)

+A(Iba) +
1

ϕ(1)
V Rϕ (f, Iba) <∞.

Thus, V Rϕ (Iba) ⊂ BV (Iba).
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(g) Suppose that

0 < lim
t→∞

sup
ϕ(t)

t
= r <∞.

Then, for a �xed ε > 0 we can �nd t0 such that

sup
t>T

ϕ(t)

t
− r < ε for T > t0.

Consequently, we obtain:

sup
t>T

ϕ(t)

t
< ε+ r for T > t0

or equivalently
ϕ(t) < (ε+ r)t for t > t0.

Other words, there are t0 > 0 and k > 0 such that

ϕ(t) < kt for t > t0. (6)

Now, take f ∈ V Rϕ (Iba) and let Π1, Π2 be partitions of [a1, b1] and [a2, a2], respec-
tively. Consider the following sets:

Cto : = {i :

(
| ∆10f(ti, x2) |
| ∆ti |

)
≥ to},

C ′to : = {j :

(
| ∆01f(x1, sj) |
| ∆sj |

)
≥ to},

C ′′to : = {(i, j) :

(
| ∆11f(ti, sj) |
| ∆sj || ∆ti |

)
≥ to}.

Then, we get

m∑
i=1

ϕ

[
| ∆10f(ti, x2) |
| ∆ti |

]
| ∆ti |≤ kV[a1, b1](f) + ϕ(to)(b1 − a1).

Therefore, V Rϕ,[a1, b1](f) ≤ kV[a1, b1](f) + ϕ(to)(b1 − a1) < ∞. Similarly, we obtain

that V Rϕ,[a2, b2](f) ≤ kV[a2, b2](f) + ϕ(to)(b2 − a2). Further, we prove that V Rϕ (f) ≤
kVIba(f) + ϕ(to)A(Iba). Indeed, we have

m∑
i=1

n∑
j=1

ϕ

(
| ∆11f(ti, sj) |
| ∆ti || ∆sj |

)
| ∆ti || ∆sj |≤ kVIba(f) + ϕ(to)A(Iba) <∞.

Hence V Rϕ (f) ≤ kVIba(f) + ϕ(to)A(Iba). This implies

TV Rϕ (f) < kTV (f) + ϕ(to)

[
(b1 − a1) + (b2 − a2) +A(Iba)

]
<∞
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and consequently
BV (Iba) ⊂ V Rϕ (Iba).

On the other hand by (e) we conclude that

BV (Iba) = V Rϕ (Iba).

This completes the proof. �

Keeping in mind De�nition 2.2 from now on we will assume that ϕ is a convex
function such that

lim
t→∞

ϕ(t)

t
=∞.

Remark 2.4. From Theorem 2.3 (b) and (d) follows that V Rϕ (Iba) is a symmetric and

convex subset of the linear space X consisting of all functions f : Iba −→ R. Then

the linear space
〈
V Rϕ (Iba)

〉
generated by V Rϕ (Iba) may be written in the form〈

V Rϕ (Iba)
〉

:=
{
f ∈ X : there is λ > 0 such that λf ∈ V Rϕ (Iba)

}
.

Denote by BV Rϕ (Iba;R) the space of functions of ϕ-bounded variation in the sense
of Riesz. Thus

BV Rϕ (Iba;R) :=
{
f : Iba −→ R : TV Rϕ (λf) < +∞ for some λ > 0

}
=

〈
V Rϕ (Iba)

〉
.

Remark 2.5. Observe that the set BV Rϕ (Iba) is an algebra with usual operations on
functions.

Moreover the set

A =
{
f : Iba −→ R : TV Rϕ (f) ≤ 1

}
(7)

is absorbent and balanced, so the Minkowski functional associated to the set A is a
semi-norm.

Remark 2.6. Since the set
{
ε > 0 : TV Rϕ (u/ε) ≤ 1

}
is nonempty, therefore the

following de�nition has sense.

De�nition 2.7. Let ϕ ∈ Φ be a convex function and let ‖ · ‖ϕ,0 : BV Rϕ,0(Iba) −→ R+

be de�ned by the formula

‖f‖ϕ,0 := inf
{
ε > 0 : TV Rϕ (f/ε) ≤ 1

}
,
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with BV Rϕ,0(Iba) :=
{
f ∈ BV Rϕ (Iba) : f(a) = 0

}
.

Then, BV Rϕ (Iba;R) has Banach space structure with respect to the norm

‖f‖Rϕ := |f(a)|+ inf
{
ε > 0 : TV Rϕ (f/ε) ≤ 1

}
for f ∈ BV Rϕ (Iba;R).

Theorem 2.8. Let ϕ ∈ Φ be convex. Then
(
BV Rϕ (Iba), ‖ · ‖Rϕ

)
is a Banach space.

3. The Banach algebra BV R
ϕ (Iba)

The techniques and methods used in this section are similar to those used by V.V.
Chistyakov in [4].

The �rst main result of this section is contained in the following theorem:

Theorem 3.1. The space
(
BV Rϕ (Iba;R), ‖ · ‖Rϕ

)
is a Banach algebra. In addition,

‖f · g‖Rϕ ≤ ‖f‖Rϕ · ‖g‖Rϕ for f, g ∈ BV Rϕ (Iba;R).

Proof. We know that: ‖f‖Rϕ := |f(a)| + ‖f − f(a)‖Rϕ,0 and ‖f‖Rϕ,0 := inf
{
ε > 0 :

TV Rϕ (f/ε) ≤ 1
}
. Hence we obtain

‖f · g‖Rϕ = |(fg)(a)|+ ‖(fg)− (fg)(a)‖Rϕ,0
= |f(a) · g(a)|+ ‖f · g + f · g(a)− f · g(a)− f(a) · g(a)‖Rϕ,0
= |f(a) · g(a)|+ ‖f [g − g(a)] + [f − f(a)]g(a)‖Rϕ,0
≤ |f(a)| · |g(a)|+ ‖f [g − g(a)]‖Rϕ,0 + ‖[f − f(a)]g(a)‖Rϕ,0
≤ |f(a)| · |g(a)|+ ‖f‖Rϕ,0 · ‖g − g(a)‖Rϕ,0 + ‖f − f(a)‖Rϕ,0 · |g(a)|
= |f(a)| · |g(a)|+ ‖f − f(a) + f(a)‖Rϕ,0 · ‖g − g(a)‖Rϕ,0 + ‖f − f(a)‖Rϕ,0 · |g(a)|

≤ |f(a)| · |g(a)|+
[
‖f − f(a)‖Rϕ,0 + |f(a)|

]
‖g − g(a)‖Rϕ,0 + ‖f − f(a)‖Rϕ,0 · |g(a)|

=
[
|f(a)|+ ‖f − f(a)‖Rϕ,0

]
·
[
|g(a)|+ ‖g − g(a)‖Rϕ,0

]
= ‖f‖Rϕ · ‖g‖Rϕ .

Thus, the proof is complete. �

4. The composition operator on BV R
ϕ (Iba;R)

The objective of this section is to characterize the composition (Nemystkii) operator
on the space BV Rϕ (Iba;R) of functions of ϕ-total bounded variation in the sense of

Riesz BV Rϕ (Iba). The main result in this section (Theorem 5.1) will be proved without
the notion of left�left regularization and left�left continuity of two variable functions.
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Let us de�ne the Luxemburg functional on the linear space BV Rφ (Iba;R) by putting:

Pφ(f) := inf
{
r > 0 : TV Rφ (f/r) ≤ 1

}
, f ∈ BV Rφ (Iba), φ ∈ Φ. (8)

Since the mapping Pφ is the Minkowski functional of a convex set Eφ =
{
f ∈

BV Rφ (Iba) : TV Rφ (f) ≤ 1
}
, the zero mapping is contained in Ker(Eφ) and λEφ ⊂ Eφ

for all λ such that |λ| < 1.

Next, we shall give the lemma which will be used in the proof of our main result.

Lemma 4.1. Assume that φ ∈ Φ is convex and f ∈ BV Rφ (Iba;R). Then

(a) If Pφ(f) > 0 then TV Rφ (f/Pφ(f)) ≤ 1.

(b) If r > 0, then TV Rφ (f/r) ≤ 1 if and only if Pφ(f) ≤ r.

(c) If r > 0 and TV Rφ (f/Pφ(f)) = 1 then Pφ(f) = r.

Proof. (a) The de�nition of Pφ(f) implies that TV Rφ (f/r) ≤ 1 for all r > Pφ(f).
Let us choose a sequence rn > Pφ(f), n ∈ N, which converges to Pφ(f) when n→∞.
Then f/rn → f/Pφ(f) uniformly in Iba since Iba is closed. Hence we obtain

TV Rφ (f/Pφ(f)) ≤ lim
n→∞

inf TV Rφ (f/rn) ≤ 1.

Consequently we deduce that Pφ(f) ∈ {r > 0 : TV Rφ (f/r) ≤ 1} := Λ and Pφ(f) =
min Λ.

(b) If TV Rφ (f/r) ≤ 1 then from the de�nition given by (8) we obtain that Pφ(f) ≤ r.
Conversely, if Pφ(f) = r, then TV Rφ (f/r) ≤ 1 by (b). Now, we shall show that

If Pφ(f) < r, then TV Rφ (f/r) < 1. (9)

Indeed, if Pφ(f) = 0, then f is a constant mapping and TV Rφ (f/r) = 0 (see Theorem

2.3 (d)). Suppose that Pφ(f) > 0. From the convexity of TV Rφ (·) (see Theorem 2.3
(e)) and from (a) we get:

TV Rφ (f/r) = TV Rφ

(Pφ(f)

r
· f

Pφ(f)
+
(

1− r

Pφ(f)

)
c
)

≤ Pφ(f)

r
· TV Rφ

( f

Pφ(f)

)
+
(

1− r

Pφ(f)

)
TV Rφ (c)

= (Pφ(f)/r)TV Rφ

( f

Pφ(f)

)
≤ (Pφ(f)/r) < 1.

(c) Assume that TV Rφ (f/r) = 1. From part (b), if Pφ(f) > r then TV Rφ (f/r) > 1,

which contradicts the assumption. If Pφ(f) < r, then from (8) we obtain TV Rφ (f/r) <
1. Therefore, Pφ(f) = r. This ends the proof. �
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5. Characterization of globally Lipschitzian composi-

tion operators

The following theorem is the main result of this work which extends the results
of Matkowski in the case when the composition operator is de�ned on the space
BV Rϕ (Iba;R).

Theorem 5.1. Let ϕ ∈ Φ be a convex function satisfying the condition ∞1 and let

H : RIba −→ RIba be the composition operator generated by the function h : Iba×R→ R
and de�ned by the formula

(Hf)(t, s) = h
(
t, s, f(t, s)

)
,

for f ∈ RIba , (t, s) ∈ Iba. If H maps BV Rϕ (Iba;R) into itself and is globally Lipschitzian,
then the following condition is satis�ed∣∣h(x, u1)− h(x, u2)

∣∣ ≤ δ∣∣u1 − u2

∣∣, (10)

for each x ∈ Iba and all u1, u2 ∈ R. Moreover, there exist two functions h0, h1 ∈
BVϕ(Iba;R) such that

h(x, u) = h0(x) + h1(x)u, (11)

for x ∈ Iba and u ∈ R. Conversely, if h0, h1 ∈ BVϕ(Iba,R) and h(x, u) = h0(x) +
h1(x)u, for x ∈ Iba and for u ∈ R, then H maps the space BV Rϕ (Iba) into itself and is
globally Lipschitzian.

Proof. Notice that in the proof we apply the technique similar to those from [3, 4].
At the beginning, for arbitrarily �xed α, β ∈ R, α < β, let us put

ηα,β (t) =


0 for t ≤ α
t− α
β − α

for α ≤ t ≤ β

1 for t ≥ β.

(12)

Observe that η
α,β : R→ R and is Lipschitzian.

We divide the proof into three steps.

Step 1. We prove inequality (10). To this end we show �rst an auxiliary inequality
which will be frequently used in our reasoning.
Since H : BV Rϕ (Iba) −→ BV Rϕ (Iba) is Lipschitzian, there exists a constant µ > 0 such

that ‖Hf1 − Hf2‖Rϕ ≤ µ‖f1 − f2‖BV Rϕ for f1, f2 ∈ BV Rϕ (Iba). The de�nition of the

norm ‖·‖BV Rϕ implies that Pϕ(Hf1−Hf2) ≤ µ‖f1−f2‖BV Rϕ . From Lemma 4.1 (c) we

infer that if ‖f1 − f2‖BV Rϕ > 0, then the last inequality is equivalent to the following
one

TV Rϕ

(
Hf1 −Hf2

µ‖f1 − f2‖BVRϕ

)
≤ 1.
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From the de�nitions of the operators TV Rϕ and H we deduce that for all x =
(x1, x2), y = (y1, y2) ∈ R2, x1 < y1, x2 < y2 we have that

ϕ

(
‖(Hf1 −Hf2)(x1, x2)− (Hf1 −Hf2)(y1, y2)‖

µ‖f1 − f2‖BVRϕ ‖y − x‖

)
‖y − x‖ ≤ 1.

Hence, taking the inverse function, we get∣∣∣h(x, f1(x))− h(x, f2(x))− h(y, f1(y)) + h(y, f2(y))
∣∣∣ ≤

µ‖f1 − f2‖BVRϕ ‖y − x‖ϕ
−1
(

1
/
‖y − x‖

)
. (13)

Now, we consider the following four cases: (i) a1 < x1 ≤ b1 and a2 < x2 ≤ b2,
(ii) a1 < x1 ≤ b1 and x2 = a2, (iii) x1 = a1 and a2 < x2 ≤ b2, (iv) x1 = a1

and x2 = a2.

Thus, assume that u1, u2 are arbitrarily �xed real numbers and H = Hf1 −Hf2.

Case (i). De�ne two functions f1, f2 on the space BV Rϕ (Iba;R) by putting
f1(y1, y2) :=

[
ηa1 ,x1

(y1) + ηa2 ,x2
(y2)

]
(u1 − u2)/2,

aj ≤ yj ≤ bj , j = 1, 2

f2(y1, y2) :=
[
ηa1 ,x1

(y1)− ηa2 ,x2
(y2)

]
(u1 − u2)/2,

(14)
for aj ≤ yj ≤ bj (j = 1, 2).

Since fj(a) = 0 (j = 1, 2) we have that

V Rϕ,[a1,b1]

(
f1 − f2

r
(·, a2)

)
= 0 = V Rϕ

(
f1 − f2

r
, Iba

)
and

V Rϕ,[a2,b2]

(
(f1 − f2)

r
(a1, ·)

)
ϕ

(
|u1 − u2|
r|x2 − a2|

)
|x2 − a2|.

If we choose r > 0 such that

TV Rϕ

(
f1 − f2

r

)
V Rϕ,[a1,b1]

(
f1 − f2

r
(·, a2)

)
+ V Rϕ,[a2,b2]

(
f1 − f2

r
(a1, ·)

)

+V Rϕ

(
f1 − f2

r

)
ϕ

(
|u1 − u2|
r|x2 − a2|

)
|x2 − a2| = 1,

then from Lemma 4.1 we obtain

‖f1 − f2‖BVRϕ = Pϕ(f1 − f2) = r =
|u1 − u2|

|x2 − a2|ϕ−1 (1/|x2 − a2|)
. (15)
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Next, putting (14) into (13), for all a1 < x1 < y1 ≤ b1, a2 < x2 < y2 ≤ b2 and
u1, u2 ∈ BV Rϕ (Iba) we get:

∣∣∣h(x1, x2, u1)− h(x1, x2, u2)
∣∣∣

≤ µ‖f1 − f2‖BVRϕ |x2 − a2|ϕ−1
(

1/|x2 − a2|
)

= µ
|u1 − u2|

|x2 − a2|ϕ−1
(

1/|x2 − a2|
) · |x2 − a2|ϕ−1

(
1/|x2 − a2|

)
= µ|u1 − u2|.

Hence we have that h is a Lipschitzian function.

Case (ii). We de�ne the functions

fj(y1, y2) = ηa
1
,x

1
(y1)uj for aj ≤ yj ≤ bj (j = 1, 2). (16)

Observe that fj(a) = 0 (j = 1, 2) and

V Rϕ,[a1,b1]

(
f1 − f2

r
(·, a2)

)
ϕ

(
|u1 − u2|
r|x1 − a1|

)
|x1 − a1|,

V Rϕ,[a2,b2]

(
f1 − f2

r
(a1, ·)

)
= 0 = V Rϕ

(
f1 − f2

r
, Iba

)
.

If we choose r > 0 such that

TV Rϕ

(
f1 − f2

r

)
ϕ

(
|u1 − u2|
r|x1 − a1|

)
|x1 − a1| = 1, (17)

then from Lemma 4.1 we obtain

‖f1 − f2‖BVRϕ = Pϕ(f1 − f2) = r =
|u1 − u2|

|x1 − a1|ϕ−1 (1/|x1 − a1|)
. (18)

Now, linking (17) and (13), for all a1 < x1 ≤ b1, a2 < x2 ≤ b2 and u1, u2 ∈ BV Rϕ (Iba)
we get: ∣∣∣h(x1, a2, f1(x1, a2))− h(x1, a2, f2(x1, a2))

∣∣∣ ≤ µ|u1 − u2|. (19)

Case (iii). This case can be done in a similar way as case (ii). We only have to
de�ne the functions f1, f2 ∈ BV Rφ (Iba), by putting

fj(y1, y2) = η
a2
,x2

(y2)uj for aj ≤ yj ≤ bj (j = 1, 2).

Case (iv). Consider the functions f1, f2 ∈ BV Rϕ (Iba) de�ned by the formula

fj(y1, y2) := [1− ηa
1
,b

1
(y1)]uj/2 for aj ≤ yj ≤ bj (j = 1, 2).
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Then we have that fj(a) = uj (j = 1, 2), fj(b) = 0 (j = 1, 2) and we obtain H(b) = 0.
Moreover,

V Rϕ,[a1,b1]

(
f1 − f2

r
(·, a2)

)
= ϕ

(
|u1 − u2|
2|b1 − a1|

)
|b1 − a1|,

V Rϕ,[a2,b2]

(
f1 − f2

r
(a1, ·)

)
= 0 = V Rϕ

(
f1 − f2

r
, Iba

)
.

If we take r > 0 such that

TV Rϕ

(f1 − f2

r
; Iba

)
= ϕ

(
|u1 − u2|
2|b1 − a1|

)
|b1 − a1| = 1,

then from Lemma 4.1 we get

‖f1 − f2‖Rϕ = P(f1 − f2) = r
|u2 − u1|

|b1 − a1|ϕ−1

(
1

|b1 − a1|

) .
Thus, from estimate (13) we deduce that∣∣h(a1, a2, u1)− h(a1, a2, u2)

∣∣ ≤ µ|u2 − u1|

and therefore h is Lipschitzian.

Step 2. We shall prove estimate (11). To this end, let us �x x1 ∈ (a1, b1] and
x2 ∈ (a2, b2]. Put x = (x1, x2). Further, for each m ∈ N we consider the partitions:

a1 < α1 < β1 < α2 < β2 < · · · < αm < βm < x1,

a2 < α1 < β1 < α2 < β2 < · · · < αm < βm < x2.

Next, consider two auxiliary functions: η
α,β

: [a1, b1]→ [0, 1] and η
α,β

: [a2, b2]→ [0, 1]
de�ned in the following way:

ηm(t) :=


0 for a1 ≤ t ≤ α1

ηα
i
,β
i
(t) for αi ≤ t ≤ βi, i = 1, 2, · · · ,m

1− ηβ
i
,α
i+1

(t) for βi ≤ t ≤ αi+1, i = 1, 2, · · · ,m− 1

1 for βm ≤ t ≤ b1,

(20)

ηm(s) :=


0 for a2 ≤ s ≤ α1

ηα
i
,β
i

(s) for αi ≤ s ≤ βi, i = 1, 2, · · · ,m
1− ηβ

i
,α
i+1

(s) for βi ≤ s ≤ αi+1, i = 1, 2, · · · ,m− 1

1 for βm ≤ s ≤ b2.

(21)

Now, observe that the following inequality holds:

V Rϕ,[a1,b1](H) ≤ ‖Hf1 −Hf2‖Rϕ ≤ µ‖f1 − f2‖Rϕ .
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The above inequality can be expressed equivalently in the following way:

sup
ξ

m∑
i=1

ϕ

(∣∣H(ti, a2)−H(ti−1, a2)
∣∣

|∆ti|

)
|∆ti| ≤ µ‖f1 − f2‖Rϕ .

In particular, we have

m∑
i=1

ϕ

(∣∣H(βi, βi)−H(αi, αi)
∣∣

|βi − αi|

)
|βi − αi| ≤ µ‖f1 − f2‖Rϕ . (22)

Further on, for arbitrary numbers u1, u2 ∈ R, we de�ne the functions f1, f2 by
putting:

fj(y1, y2) =
1

2

[
ηm(y1) + ηm(y2)

]
u1 + (2− j)u2, aj ≤ yj ≤ bj (j = 1, 2).

Observe, that

f1(αi, αi)− f2(βi, βi) = u2 − u1

and consequently

‖f1 − f2‖Rϕ = |u1 − u2|.

Since H = Hf1 −Hf2, from (23) we get

m∑
i=1

ϕ

(∣∣(Hf1 −Hf2)(βi, βi)− (Hf1 −Hf2)(αi, αi)
∣∣

|βi − αi|

)
|βi − αi| ≤ µ‖f1 − f2‖Rϕ .

Consequently, we obtain

m∑
i=1

ϕ

(∣∣h(βi, βi, f1(βi, βi))− h(βi, βi, f2(βi, βi))− h(αi, αi, f1(αi, αi))

|βi − αi|

+h(αi, αi, f2(αi, αi))
∣∣)
|βi − αi| ≤ µ‖f1 − f2‖Rϕ .

Thus, from the de�nition of f1 and f2, we deduce that f1(βi, βi) = u1+u2, f2(βi, βi) =
u1, f1(αi, αi) = u2 and f2(αi, αi) = 0. This yields

m∑
i=1

ϕ

(∣∣h(βi, βi, u1 + u2)− h(βi, βi, u1)− h(αi, αi, u2) + h(αi, αi, 0)
∣∣

|βi − αi|

)
·

|βi − αi| ≤ µ|u2 − u1|. (23)

Since all constant functions of two variables de�ned on Iba belong to the space
BV Rϕ (Iba;R) and H maps this space into itself, we infer that the functions h(·, u)[x 7→
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h(x, u)] belong to BV Rϕ (Iba;R) for all u ∈ R. Taking into account the absolute conti-

nuity of this function and passing to limit in (24) as (αi, αi) → (βi − 0, βi − 0), we
obtain

m∑
i=1

ϕ


∣∣∣h(x1, x2, u1 + u2)− h(x1, x2, u1)− h(x1, x2, u2) + h(x1, x2, 0)

∣∣∣
|βi − αi|

 ·
|βi − αi| ≤ µ|u2 − u1|.

Hence

ϕ


∣∣∣h(x, u1 + u2)− h(x, u1)− h(x, u2) + h(x, 0)

∣∣∣
|βi − αi|

 ≤ µ|u2 − u1|
|βi − αi|

.

From the above estimate we infer the following one

0 ≤

∣∣∣h(x, u1 + u2)− h(x, u1)− h(x, u2) + h(x, 0)
∣∣∣

|βi − αi|

≤ lim
αi→βi−0

(βi − αi)ϕ−1

(
|u2 − u1|
|βi − αi|

)
.

Consequently, we get∣∣∣h(x, u1 + u2)− h(x, u1)− h(x, u2) + h(x, 0)
∣∣∣ = 0

or, equivalently

h(x, u1 + u2)− h(x, u1)− h(x, u2) + h(x, 0) = 0.

Finally, we obtain the equality

h(x, u1 + u2) + h(x, 0) = h(x, u1) + h(x, u2), (24)

being valid for all x1 ∈ (a1, b1], x2 ∈ (a2, b2], and u1, u2 ∈ R.

Now, let x1 ∈ (a1, b1] and x2 = b2. Consider the partitions a1 < α1 < β1 < α2 <
β2 < · · · < αm < βm < x1 and a2 < α1 < β1 < α2 < β2 < · · · < αm < βm < b2.
Similarly as before we obtain (24). Then passing to the limit when (α1, βm) →
(x1 − 0, x2 + 0) in equation (24) we obtain again equality (25).

The cases x1 = a1 and x2 ∈ (a2, b2] or x1 = a1 and x2 = a2 can be treated in a
similar way. Thus, we have

h(x, u1 + u2) + h(x, 0) = h(x, u1) + h(x, u2), (25)
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for all x = (x1, x2) ∈ Iba and f1, f2 ∈ R.
To complete the proof of (11), for a �xed x ∈ Iba we de�ne the function Tx : R→ R,

by putting
Tx(u) = h(x, u)− h(x, 0).

Now, let us write equality (26) in the form

Tx(u1 + u2) = Tx(u1) + Tx(u2), where u1, u2 ∈ R.

This proves that Tx is an additive operator. From inequality (10) and the de�nition
of h(·, u), we get: ∣∣∣Tx(u1)− Tx(u2)

∣∣∣ ≤ µ|u1 − u2| for u1, u2 ∈ R. (26)

Thus Tx is a Lipschitzian mapping on R.
In what follows let us de�ne the mapping h0 : Iba −→ R by the formula h0(x) =

h(x, 0) for x ∈ Iba. Next, let h1 : Iba −→ R be de�ned as

h1(x)u = Tx(u) for x ∈ Iba, u ∈ R.

Then we have
h(x, u) = Tx(u) + h(x, 0) = h1(x)u+ h0(x).

Since h0(·) = h(·, 0) and h1(·) = h(·, 1)− h(·, 0) then h0, h1 ∈ BV Rϕ (Iba;R).
Therefore

h(x, u) = h0(x) + h1(x)u

for all x ∈ Iba and u ∈ R, with h0, h1 ∈ BV Rϕ (Iba).

Step 3. Conversely, suppose that the composition operator H is given by the formula

(Hf)(x) = h0(x) + h1(x)f(x) for x ∈ Iba, f ∈ BV Rϕ (Iba).

Since BV Rϕ (Iba) is an algebra we deduce that

TV Rϕ (Hf) ≤ ‖Hf‖ϕ <∞.

Thus, Hf ∈ BV Rϕ (Iba). Other words, H maps BV Rϕ (Iba) into itself. Hence we obtain

‖H(f1)−H(f2)‖Rϕ ≤ ‖h1‖Rϕ‖f1 − f2‖Rϕ . (27)

This shows that H is Lipschitzian and completes the proof. �
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Abstract: Let A denote the class of functions f analytic in the

unit disk U = {z ∈ C : |z| < 1} of the form f(z) = z +
∞∑
n=2

anz
n.

Given a sequence T = {Tn}∞n=2 consisting of positive numbers, the Tδ-
neighborhood (δ > 0) of the function f is defined as

TNδ(f) =

{
g(z) = z +

∞∑
n=2

bnz
n ∈ A :

∞∑
n=2

Tn|an − bn| ≤ δ

}
.

In this paper we consider TNδ(f) with the sequence of the form

T =

{
1

n2(n− 1)

}∞
n=2

to obtain some results about Tδ-neighborhoods of several classes of an-
alytic functions. One of the considered problems is to find a number
δ∗(A,B) such that

δ∗(A,B) = inf {δ > 0 : TNδ(f) ⊃ B for all f ∈ A} ,

where the sets A,B ⊂ A are given. Some results and open problems
on the classes of starlike, convex, concave, close-to-convex and univalent
functions are presented.
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Key Words and Phrases: Analytic functions; Starlike functions; Convex functions;
Close-to-convex functions; Concave functions; Hadamard product; Neighborhood of
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1. Introduction

Let A denote the class of functions f analytic in the unit disk U = {z ∈ C : |z| < 1}
of the form f(z) = z+

∞∑
n=2

anz
n. Given a sequence T = {Tn}∞n=2 consisting of positive

numbers, the Tδ-neighborhood (δ > 0) of the function f is defined as

TNδ(f) =

{
g(z) = z +

∞∑
n=2

bnz
n ∈ A :

∞∑
n=2

Tn|an − bn| ≤ δ

}
.

If T = {n}∞n=2 then Tδ-neighborhood becomes the δ-neighborhood Nδ(f) introduced
by St. Ruscheweyh [13]. He proved that if f ∈ C then N1/4(f) ⊂ S∗, where C, S∗
denote the well known classes of convex and starlike functions, respectively. In this
way he generalized the earlier result that N1(z) ⊂ S∗. Some results of this type one
can find in [16], [8], [9], [10]. The Tδ-neighborhood was introduced in [15], where the
authors considered the problem of finding a sufficient condition f ∈ A that implies
the existence of TNδ(f) being contained in a given subclass. They proved a number
of theorems showing the importance of convolutions in the study of Tδ-neighborhoods

and considered for an arbitrary normal family T ⊂ A of functions t(z) = z+
∞∑
k=2

tkz
k

the sequence T = {τk}∞k=2 such that

τn = sup {|tn| : t ∈ T } > 0 (n = 2, 3, ...).

For f(z) = z+
∞∑
k=2

akz
k and g(z) = z+

∞∑
k=2

bkz
k the convolution or Hadamard product

of f and g is (f ∗ g)(z) = z +
∞∑
k=2

akbkz
k.

An interesting problem of stability of convolution on certain classes by using the
δ- neighborhoods was considered in [12], [11]. For work on this problem see also the
papers [5], [6], [4]. Let S denote the subclass of A of functions univalent in U . Let us
consider the following sequence of nonnegative reals

T =

{
1

n2(n− 1)

}∞
n=2

(1.1)

In this paper we will use the above sequence to obtain the results about Tδ-neighbor-
hoods. The motivation of choice the sequence (1.1) is the convergence of the series∑∞
n=2 Tn|an − bn| for |an| ≤ n, |bn| ≤ n′.

2. Main results

Theorem 1. If f(z) = z +
∞∑
n=2

anz
n, g(z) = z +

∞∑
n=2

bnz
n and |an| ≤ n, |bn| ≤ n,

n = 2, 3, 4, ..., then g ∈ TN2(f), where T is given in (1.1).
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Proof. We have
∞∑
n=2

Tn|an − bn| ≤
∞∑
n=2

2n

n2(n− 1)
=

∞∑
n=2

2

n(n− 1)
= 2,

so g ∈ TN2(f).
2

It is well known that if S, S∗, C and K denote the well-known classes of univalent,
starlike, convex and close-to-convex functions respectively then C ⊂ S∗ ⊂ K ⊂ S and
if f ∈ S∗ then |an| ≤ n while if f ∈ C then |an| ≤ 1. As a direct application of
Theorem 1 we obtain Tδ-neighborhood information for S∗ and K.

Corollary 1. If f belongs to one of the classes S∗,K,S, then TN2(f) ⊃ S.

The result will change if we consider the class of convex functions C.

Corollary 2. If f ∈ C then TNx(f) ⊃ S , where x = 3− π2

6 = 1, 355... .

Proof. If f(z) = z+
∞∑
n=2

anz
n ∈ C, then |an| ≤ 1, n ≥ 2. Thus if g(z) = z+

∞∑
n=2

bnz
n ∈

S, then we have

∞∑
n=2

Tn|an − bn| ≤
∞∑
n=2

n+ 1

n2(n− 1)
= 2

∞∑
n=2

1

n(n− 1)
−
∞∑
n=2

1

n2

= 2−
(
π2

6
− 1

)
= 3− π2

6
= 1, 355... .

2

An interesting problem is to find the smallest number δ∗ such that TNδ∗(f) ⊃ S
for each f ∈ S. Let us denote for A,B ⊂ S

δ∗(A,B) = inf {δ : TNδ(f) ⊃ B ∀f ∈ A} .

Theorem 2. The following inequalities are valid

1, 386 . . . = 2 ln 2 ≤ δ∗(S,S) ≤ 2.

Proof. It is well-known that Koebe function and its rotations belong to the class S.
Thus the functions

f(z) =
z

(1− z)2
= z +

∞∑
n=2

nzn,
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g(z) =
z

(1 + z)2
= z +

∞∑
n=2

(−1)n+1nzn

are in S and

∞∑
n=2

Tn|an − bn| =

∞∑
k=1

2 · 2k
(2k)2(2k − 1)

= 2

∞∑
k=1

1

2k(2k − 1)
= 2

[
1− 1

2
+

1

3
− 1

4
+ . . .

]

= 2

∞∑
k=1

(−1)k+1

k
= 2 ln 2 = 1, 386 . . . .

Therefore δ∗(S,S) cannot be smaller than 2 ln 2 and by Corollary 1 the number
δ∗(S,S) is less or equal to 2.

2

The functions f and g in the proof of Theorem 2 are starlike and close-to-convex
so as a direct application of Theorem 2 we obtain the following corollary.

Corollary 3. The following inequalities are valid

2 ln 2 ≤ δ∗(A,B) ≤ 2,

where A and B is one of the classes S, S∗ or K.

Theorem 3. The following inequalities are valid

1, 20876... =
π2

12
+ ln 4− 1 ≤ δ∗(C,S) ≤ 3− π2

6
= 1, 355... .

Proof. Let

f(z) =
z

1 + z
= z − z2 + z3 − z4 + ... = z +

∞∑
n=2

bnz
n,

g(z) =
z

(1− z)2
= z +

∞∑
n=2

nzn = z +

∞∑
n=2

anz
n.
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Then f ∈ C and g ∈ S and

∞∑
n=2

Tn|an − bn| =
∞∑
n=2

n+ (−1)n

n2(n− 1)

=

∞∑
k=1

2k + 1

(2k)2(2k − 1)
+

∞∑
k=1

(2k + 1)− 1

(2k + 1)2((2k + 1)− 1)

=

∞∑
k=1

(2k − 1) + 2

(2k)2(2k − 1)
+

∞∑
k=1

1

(2k + 1)2

=

∞∑
k=1

2

(2k)2(2k − 1)
+

∞∑
k=1

1

(2k)2
+

∞∑
k=1

1

(2k + 1)2

=

∞∑
k=1

2

(2k)2(2k − 1)
+

∞∑
n=2

1

n2

=

∞∑
k=1

2

2k(2k − 1)
−
∞∑
k=1

2

(2k)2
+

∞∑
n=2

1

n2

=

∞∑
n=2

1

n2
− 1

2

∞∑
k=1

1

k2
+ 2

[
1

1 · 2
+

1

3 · 4
+

1

5 · 6
+

1

7 · 8
+ . . .

]

= −1 +
1

2

∞∑
n=1

1

n2
+ 2

[
1− 1

2
+

1

3
− 1

4
+ ...

]
= −1 +

π2

12
+ 2 ln 2.

The upper bound we obtain from Corollary 2.
2

In [3] the authors considered functions f that are meromorphic and univalent in
the open unit disk U = {z : |z| < 1} holomorphic at zero and have the expansion
f(z) = z + a2z

2 + a3z
3 + ... . If, in addition, the complement of f(U) with respect to

C is convex, then f is called a concave univalent function. The class of such functions
is denoted by Co. The main result of the paper [2] is that if f ∈ Co, then |an| ≥ 1
for all n > 1 and equality holds if and only if f(z) = z/(1− ηz), |η| = 1. This result
was conjectured earlier in [3]. In [2] the authors considered the class Co(p) of concave
functions that have a pole at the point p. The same authors proved in [1] a stronger
result that if f ∈ Co(1) that is f is analytic in U with f(1) =∞, then∣∣∣∣an − n+ 1

2

∣∣∣∣ ≤ n− 1

2
for n ≥ 2 (1.2)

and equality holds only for the function

fθ(z) =
2z − (1− eiθ)z2

2(1− z)2
. (1.3)
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It is easy to see that if f ∈ Co(1), then the complement of f(U) can be represented
as the union of a set of mutually disjoint half-lines (the endpoint of one half-line can lie
on the another half-line) so f(U) is a linearly accessible domain in the strict sense. For
example see Fig.1 below. It is known, see [7], [14], that the set of all functions that are
regular in U with the usual normalization and such that f(U) is a linearly accessible
domain in the strict sense is identical with the set of close-to convex functions K.
Therefore we obtain the next corollary.

Corollary 4. Co(1) ⊂ K.

Let us consider the ”central” function with respect to coefficient in the class Co(1)

fc(z) =
1

2

[
z

1− z
+

z

(1− z)2

]
= z +

∞∑
n=1

1 + n

2
zn. (1.4)

In order to prove that fc ∈ Co(1) notice that for z = exp(iϕ), ϕ ∈ [0, 2π), we have

fc(e
iϕ) =

2eiϕ − e2iϕ

2(1− eiϕ)2
=

cosϕ− 2 + i sinϕ

4(1− cosϕ)
=: x+ iy.

Therefore the complement of fc(U) with respect to C is a convex region bounded by
the parabola γ : y2 = − 1

2x −
3
16 , x ∈ (−∞,− 3

8 ). Moreover fc(1) = ∞ and fc(U) is
a linearly accessible domain in the strict sense so it is univalent and close-to-convex,
Fig.1.

-

6

Re

Im

rA

γ

γ : y2 = − 1
2x−

3
16

x ∈ (−∞,− 3
8 )

A = − 3
8

Fig.1. fc(e
iϕ) = cosϕ−2+i sinϕ

4(1−cosϕ)
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Theorem 4. We have the following relation

Co(1) ⊂ TNδ(fc),

where δ = 1
2 (π

2

6 − 1) = 0, 32... .

Proof. Let f(z) = z +
∞∑
n=2

anz
n be in Co(1). Thus from (1.2) we have

1

n2(n− 1)

∣∣∣∣an − n+ 1

2

∣∣∣∣ ≤ 1

2n2
, n ≥ 2.

Therefore
∞∑
n=2

|an − (n+ 1)/2|
n2(n− 1)

≤
∞∑
n=2

1

2n2
=

1

2

[
π2

6
− 1

]
,

so f ∈ TNδ(fc).
2

3. Open problem and conjectures

Conjecture 1. Is it true that

δ∗(A,B) = ln 4,

where A or B is one of the classes S∗, K, S?

Conjecture 2. Is it true that

δ∗(Co(1),S) = δ∗(C,S) = δ∗(C,S∗) = δ∗(C,K)

and it is equal ln 4 + π2

12 − 1?

Open problem. Are there the ”central” functions satisfying an analogous relation
as in Theorem 4 in the classes C, Co(p), S∗, K or S?
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1. Introduction

Let A denote the class of functions which are analytic in U := U(1), where U(R) :=
{z : |z| < R}, 0 < R ≤ 1. By Ω we denote the class of the Schwarz functions, i.e. the
class of functions ω ∈ A, such that

ω(0) = 0, |ω(z)| < 1 (z ∈U) .

For complex parameters β, γ and functions h ∈A, ω ∈ Ω, we consider the first-
order differential equation of the form

q(z) +
zq′(z)

βq(z) + γ
= (h ◦ ω) (z), q(0) = h (0) = 1. (1)

If there exist a function ω ∈ Ω, such that the function q ∈A is a solution of the
Cauchy problem (1) then we write

q(z) +
zq′(z)

βq(z) + γ
≺ h(z). (2)

The expression (2) is a first-order differential subordination and it is called the Briot-
Bouquet differential subordination.
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More general, we say that a function f ∈ A is subordinate to a function F ∈ A,
and write f(z) ≺ F (z), if and only if there exists a function ω ∈ Ω, such that

f(z) = (F ◦ ω) (z) (z ∈ U) .

Moreover, we say that f is subordinate to F in U(R), if f(Rz) ≺ F (Rz). We shall
write

f(z) ≺R F (z)

in this case. In particular, if F is univalent in U we have the following equivalence
(cf. [10]):

f(z) ≺ F (z) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

Let A0 we denote class of functions f ∈ A of the form:

f(z) = z +

∞∑
n=2

anz
n, (3)

By f ∗ g denote the Hadamard product (or convolution) of f, g ∈A0, defined by

(f ∗ g) (z) =

( ∞∑
n=1

anz
n

)
∗

( ∞∑
n=1

bnz
n

)
:=

∞∑
n=1

anbnz
n.

Let λ, σ be complex numbers. We consider the linear operator Dλ
σ :A0→ A0

defined by
Dλ
σf(z) =

(
f ∗ h

λ,σ

)
(z),

where

hλ,σ(z) =

∞∑
n=1

(
n+ σ

1 + σ

)λ
zn (z ∈ U) .

For a function f ∈ A0 we have

(1 + σ)Dλ+1
σ f(z) = z

[
Dλ
σf(z)

]′
+ σDλ

σf(z). (4)

The linear operator Dλ
σ (λ ∈ N) was introduced by Cho and Srivastava [1] (see

also [13]). It is closely related to the multiplier transformations studied by Flett [5],
and also to the differential-integral operator introduced by Sălăgean [11].

A function f belonging to the class A0 is said to be starlike in U(r) if and only if

R

(
zf ′(z)

f(z)

)
> 0 (z ∈ U(r); 0 < r 5 1).

A function f belonging to the class A is said to be convex in U(r) if and only if

R

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U(r); 0 < r 5 1).
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Note that all functions starlike or convex in U(r) are univalent in U(r). Let h be
a function convex in U with h(0) = 1, and let t be complex number. We denote by
V(t, λ, σ;h) the class of functions f ∈ A0 satisfying the following condition:

z−1
[
(1− t)Dλ

σf(z) + tDλ+1
σ f(z)

]
≺ h(z), (5)

in terms of subordination.
Moreover, we define the class W(t, λ;h) of functions f ∈ A0 satisfying the follow-

ing condition:
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

(1− t)Dλ
σf(z) + tDλ+1

σ f(z)
≺ h(z). (6)

In particular for real constants A,B, −1 5 A < B ≤ 1, we denote

V(t, λ, σ;A,B) = V
(
t, λ, σ;

1 +Az

1 +Bz

)
,

W(t, λ, σ;A,B) = W
(
t, λ, σ;

1

1 + σ

(
1 +Az

1 +Bz
+ σ

))
.

For suitable chosen parameters t, λ, σ,A,B classes defined above was investigated
by many authors, see [1], [2], [3], [8], [9] and [12].

In the paper we present some inclusion relations for the defined classes.

2. Main results

We shall need the following lemmas.
Lemma 1.[7] Let w be a nonconstant function analytic in U(r) with w(0) = 0. If

|w(z0)| = max {|w(z)| ; |z| ≤ |z0|} (z0 ∈ Ur)) ,

then there exists a real number k (k ≥ 1), such that

z0w
′(z0) = kw(z0).

Lemma 2.[4] Let h be a convex function in U, with

Re[βh(z) + γ] > 0 (z ∈ U)

If a function q satisfies the Briot-Bouquet differential subordination (2) in U(R), i.e

q(z) +
zq′(z)

βq(z) + γ
≺R h(z),

then
q(z) ≺R h(z).
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Remark 1. If we put β = 0, R = 1 in Lemma 2 we obtain result due to Hallenbeck

and Ruscheweyh [6].

Making use of above lemmas, we get the following two theorems.
Theorem 1. If Re(σ) > −1, then

V(t, λ+m,σ;h) ⊂ V(t, λ, σ;h) (m ∈ N).

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function
f belong to the class V(t, λ+ 1, σ;h) or equivalently

z−1
[
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

]
≺ h(z). (7)

It is sufficient to verify the condition (5). The function

q(z) = z−1
[
(1− t)Dλ

σf(z) + tDλ+1
σ f(z)

]
(8)

is analytic in U and q(0) = 1. Taking the derivative of (8) we get

z−1
[
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

]
= q(z) +

zq′(z)

1 + σ
(z ∈ U) . (9)

Thus by (7) we have

q(z) +
zq′(z)

1 + σ
≺ h(z).

Lemma 2 now yields
q(z) ≺ h(z).

Thus by (8) f ∈ V(t, λ, σ;h) and this proves Theorem 1.

Theorem 2. If
Re[ (1 + σ)h(z)] > 0 (z ∈ U) ,

then
W(t, λ+m,σ;h(z)) ⊂ W(t, λ, σ;h(z)) (m ∈ N).

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function
f belong to the class W(t, λ+1, σ;h(z)) or equivalently

(1− t)Dλ+2
σ f(z) + tDλ+3

σ f(z)

(1− t)Dλ+1
σ f(z) + tDλ+2

σ f(z)
≺ h(z) (10)

It is sufficient to verify condition (6). If we put

R = sup
{
r : (1− t)Dλ

σf(z) + tDλ+1
σ f(z) 6= 0, z ∈ U(r)

}
,
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then the function

q(z) =
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

(1− t)Dλ
σf(z) + tDλ+1

σ f(z)
(11)

is analytic in U(R) and q(0) = 1. Taking the logarithmic derivative of (11) and
applying (4) we get

(1− t)Dλ+2
σ f(z) + tDλ+3

σ f(z)

(1− t)Dλ+1
σ f(z) + tDλ+2

σ f(z)
= q(z) +

zq′(z)

(1 + σ) q(z)
(z ∈ U(R)) . (12)

Thus by (10) we have

q(z) +
zq′(z)

(1 + σ) q(z)
≺R h(z).

Lemma 2 now yields
q(z) ≺R h(z). (13)

By (11) it suffices to verify that R = 1. From (4), (11) and (13) we conclude that the
function H(z) =(1− t)Dλ

σf(z) + tDλ+1
σ f(z) is starlike in U(R) and consequently it is

univalent in U(R). Thus we see that H(z) cannot vanish on |z| = R if R < 1. Hence
R = 1 and this proves Theorem 1.

Putting h(z) = 1+Az
1+Bz and h(z) = 1

1+σ

(
1+Az
1+Bz + σ

)
in Theorems 1 and 2, respec-

tively, we obtain the following two corollaries.
Corollary 1. If Re (σ) > −1, then

V(t, λ+m,σ;A,B) ⊂ V(t, λ, σ;A,B) (m ∈ N).

Corollary 2. If σ > 0, then

W(t, λ+m,σ;A,B) ⊂ W(t, λ, σ;A,B) (m ∈ N).

Using Lemma 1 we show the following sufficient conditions for functions to belong
to the class W(t, λ;A,B).

Theorem 3. Let σ,A,B be real numbers, σ > −1, 0 ≤ B ≤ 1, −B ≤ A < 2AB −B.
If a function f ∈ A0 satisfies the following inequality:∣∣∣∣ (1− t)Dλ+2

σ f(z) + tDλ+3
σ f(z)

(1− t)Dλ+1
σ f(z) + tDλ+2

σ f(z)
− 1

∣∣∣∣ < (B −A) (2 + σ − σA−A)− 2AB

(1 + σ) (1 +B) (1−A)
(z ∈ U) ,

(14)
then f belongs to the class W(t, λ;A,B).

Proof. Let a function f belong to the class A0. Putting

q(z) =
1 +Aw(z)

1 +Bw(z)
(z ∈ U(R)) (15)
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in (12), we obtain

(1− t)Dλ+2
σ f(z) + tDλ+3

σ f(z)

(1− t)Dλ+1
σ f(z) + tDλ+2

σ f(z)
=

1 +Aw(z)

1 +Bw(z)
+

1

1 + σ

(
Azw′(z)

1 +Aw(z)
− Bzw′(z)

1 +Bw(z)

)
.

Consequently, we have

F (z) = w(z)

{
zw′(z)

(1 + σ)w(z)

(
A

1 +Aw(z)
− B

1 +Bw(z)

)
− B −A

1 +Bw(z)

}
, (16)

where

F (z) =
(1− t)Dλ+2

σ f(z) + tDλ+3
σ f(z)

(1− t)Dλ+1
σ f(z) + tDλ+2

σ f(z)
− 1.

By (6), (11) and (15) it is sufficient to verify that w is analytic in U and

|w(z)| < 1 (z ∈ U).

Now, suppose that there exists a point z0 ∈ U(R), such that

|w(z0)| = 1, |w(z)| < 1 (|z| < |z0|).

Then, applying Lemma 1, we can write

z0w
′(z0) = kw(z0), w(z0) = eiθ (k ≥ 1).

Combining these with (16) , we obtain

|F (z0)| =

∣∣∣∣ k

1 + σ

(
−A

1 +Aeiθ
+

B

1 +Beiθ

)
+

B −A
1 +Beiθ

∣∣∣∣
≥ k

1 + σ
Re

(
−A

1 +Aeiθ
+

B

1 +Beiθ

)
+
B −A
1 +B

≥ k

1 + σ

(
−A

1−A
+

B

1 +B

)
+
B −A
1 +B

≥ (B −A) (2 + σ − σA−A)− 2AB

(1 + σ) (1 +B) (1−A)
.

Since this result contradicts (14) we conclude that w is the analytic function in U(R)
and |w(z)| < 1 (z ∈ U (R)). Applying the same methods as in the proof of Theorem
2 we obtain R = 1, which completes the proof of Theorem 3.

Putting t = 0, A = 2α − 1 and B = 1 in Corollaries 1 and 2 and Theorem 3 we
obtain following relationships for the operator Dλ

σ .
Corollary 3. Let Re (σ) > −1, m ∈ N. If a function f ∈ A0 satisfies the following
inequality:

Re

(
Dλ+m
σ f(z)

z

)
> α,
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then

Re

(
Dλ
σf(z)

z

)
> α.

Corollary 4. Let 0 ≤ α < 1, σ > 0 and m ∈ N. If a function f ∈ A0 satisfies the
following inequality:

Re

{
Dλ+m+1
σ f(z)

Dλ+m
σ f(z)

}
>
α+ σ

1 + σ
(z ∈ U) ,

then

Re

{
Dλ+1
σ f(z)

Dλ
σf(z)

}
>
α+ σ

1 + σ
(z ∈ U) .

Corollary 5. Let m ∈ N, σ > 0 and 0 ≤ α < 2/3. If a function f ∈ A0 satisfies
the following inequality:∣∣∣∣Dλ+2

σ f(z)

Dλ+1
σ f(z)

− 1

∣∣∣∣ < 1 + (1 + σ) (1− α)− α

2(1− α)
(z ∈ U) ,

then

Re

{
Dλ+1
σ f(z)

Dλ
σf(z)

}
>
α+ σ

1 + σ
(z ∈ U) .

Remark 2. Putting σ = 0 in Corollary 3, 4 and 5 we can obtain the results for
the Sălăgean operator, which was introduced by Sălăgean[11]. Putting moreover
λ = 0 or λ = 1 and m = 1 in Corollary 4 and 5 we obtain the sufficient conditions for
starlikeness of order α and convexity of order α, respectively.
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[8] Jurasińska, R.; Stankiewicz, J.: Special subclasses of Caratheodory functions and their

applications, Folia Sci. Univ. Techn. Resoviensis, Math. 10(1991), 37-45.

[9] Liu, Jin-Lin; Srivastava, H. M.: Certain properties of the Dziok-Srivastava operator,

Appl. Math. Comput. 159 (2004), 485-493.

[10] Miller, S. S.; Mocanu, P. T.: Differential subordinations: theory and applications, Series

on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcal

Dekker, New York, 2000.

[11] Sălăgean, G.S.: Subclasses of univalent functions, Lecture Notes in Math. Springer-

Verlag 1013,(1983), 362-372.

[12] Stankiewicz, J.: Some remarks of the classes R(A,B), Folia Sci. Univ. Techn. Resovien-

sis, 18(1995), 91-98.

[13] Uralegaddi, B.A.; Somanatha, C.:Certain classes of univalent functions, In Current

Topics in Analytic Function Theory. (Edited by H.M. Srivastava and S. Own), pp.

371-374, World Scientific, Singapore, (1992).

J. Dziok
email: jdziok@univ.rzeszow.pl

Institute of Mathematics, University of Rzeszów
ul. Rejtana 16A, PL-35-310 Rzeszów, Poland

J. Ohriska
email: ohriska@kosice.upjs.sk

Department of Mathematics,
Faculty of Science, P. J. S̆afárik University
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Introduction

A Fixed Point Theory for multivalued mappings (that is, mappings such that the
image of a point is a set) has many applications in Applied Sciences. Thus, the ex-
tension of the known fixed point results for singlevalued mappings to the setting of
multivalued mappings looks like a very natural problem. Some theorems about the
existence of fixed point for singlevalued nonexpansive mappings have already been
extended to the multivalued case, In 1969 S.B. Nadler [12] extended the Banach Con-
traction Mapping Principle in complete metric space. However, many other questions
remain open, for instance, the possibility of extending the well-known Kirk’s Theorem,
that is, whether reflexive Banach spaces with normal structure have the fixed point
property for multivalued nonexpansive mappings. Until now, the answer is unknown.
Since there exist different geometrical properties of Banach spaces which imply nor-
mal structure and reflexivity (for example, uniform convexity, uniform smoothness
and nearly uniform convexity), it is natural to study if these properties imply the
FPP for multivalued nonexpansive mappings. In 1974 T.C. Lim [10] proved the ex-
istence of a fixed point for a nonexpansive mapping defined from a closed bounded
convex subset C of a uniformly convex Banach space X into the compact subsets of
C. The original proof of Lim’s Theorem combined Edelstein’s method of asymptotic
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centers and transfinite induction. The study of certain properties of the asymptotic
center of sequences led W.A. Kirk and S. Massa in 1990 to a generalization of Lim’s
Theorem, proving the existence of a fixed point for a nonexpansive mapping defined
from a closed bounded convex subset C of a Banach space into compact convex sub-
sets of C, under the hypothesis of compactness of the asymptotic center in C of every
bounded sequence. The example given by T. Kuczumow and S. Prus [9] shows that
this method gives no results in nearly uniformly convex spaces.

1. Preliminaries

In this section we introduce some notions and known results related to the existence
of fixed points for multivalued nonexpansive mappings. We denote by CB(X) the
family of all nonempty closed bounded subsets of Banach space X and by K(X) (resp.
KC(X)) the family of all nonempty compact (resp. compact convex) subsets of X.
On CB(X) we have the Hausdorff metric H given by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
, A,B ∈ CB(X)

where for x ∈ X and A ⊂ X d(x,A) = inf {‖x− y‖ : y ∈ A} .

Definition 1.1 A multivalued mapping T : C → CB(X) is said to be k-contractive
if

H(Tx, Ty) ≤ k ‖x− y‖ , x, y ∈ C, k ∈ [0, 1).

and T is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖ , x, y ∈ C.

The concept of asymptotic center of sequences was firstly considered by M. Edelstein
[6] and later it was extended to nets by T.C. Lim [11].

Definition 1.2 Let C be a nonempty subset of a Banach space X, D a directed set

and {xα}α∈D a bounded net in X. The asymptotic radius and the asymptotic center

of the net {xα}α∈D in C are defined by

r(C, {xα}) = inf

{
lim sup

α
‖xα − x‖ : x ∈ C

}
,

A(C, {xα}) =

{
x ∈ C : lim sup

α
‖xα − x‖ = r(C, {xα})

}
.

Recall that, if D is a bounded subset of X, the Chebyshev radius of D relative to a

set C is defined by

rc(D) = inf {sup {‖x− y‖ : y ∈ D} : x ∈ C} .

Now we recall the (DL)α-condition (see [7]), which is the main tool in order to assure

the existence of fixed point.
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Definition 1.3 A Banach space X is said to satisfy the (DL)α-condition with respect

to a topology τ if there exists λ ∈ [0, 1) such that for every τ -compact convex subset

C of X and for every bounded ultranet {xα} in C

rc(A(C, {xα})) ≤ λr(C, {xα}).

Theorem 1.1 Let C be a nonempty τ -compact closed bounded convex subset of a

Banach space X and T : C → KC(C) be a nonexpansive mapping. If X satisfies the

(DL)α-condition with respect to a topology τ , then T has a fixed point.

Let us consider now the concept of uniform smoothness of Banach space.

Definition 1.4 A Banach space X is said to be uniformly smooth if

ρ
′

X(0) = 0,

where ρX is the modulus of smoothness of X, defined for λ ≥ 0 by

ρX(λ) = sup

{
1

2
(‖x+ λy‖+ ‖x− λy‖)− 1 : ‖x‖ ≤ 1 ‖y‖ ≤ 1

}
.

Its known (see [13]) that if ρ
′

X(0) < 1/2, then X is reflexive and has uniform normal

structure.

2. Main result

In [5] T. Domı́nguez Benavides and B. Gavira proved that uniformly smooth Banach

spaces satisfy the fixed point property for multivalued mappings. Indeed they proved

this fact under weaker assumption ρ
′

X(0) < 1/2 (recall that X is uniformly smooth if

and only if ρ
′

X(0) = 0). We give now some simplifications of the proof of this theorem.

Theorem 2.1 Let C be a nonempty, convex, closed, bounded subset of a Banach

space X such that ρ
′
(0) < 1/2, and T : C → KC(C) be a nonexpansive mapping.

Then T has a fixed point, that is, there exist x ∈ C such that x ∈ Tx.

Proof. Let {xα}α∈D be a ultranet in C. Denote r = r(C, {xα}), A = A(C, {xα}
and rC = rC(A(C, {xα}). Since C is a ω-compact set, the ultranet {xα}α∈D is

weakly convergent to a point x ∈ C. Furthermore, limα∈D ‖xα − x‖ exists for each

x ∈ C. Let z1 ∈ A fixed and let z ∈ A arbitrary. Then we have limα ‖xα − z1‖ =

limα ‖xα − z‖ = r. Let U be a free ultrafilter on the set D containing the filter

generated by B = {Bα : α ∈ D} with Bα = {β ∈ D : β ≥ α}. In the ultrapower XU

of X we consider

ṽ =
1

r
{xα − z}U ∈ SXU w̃ =

1

r
{xα − z1}U ∈ SXU .
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Then for arbitrary m ≥ 1 and β ∈ (0, 1) we have

‖ṽ − βw̃‖U =
1

r
lim
U
‖xα − z − β(xα − z1)‖

=
1

r
c

∥∥∥∥xα − z − m− 1

m
β(xα − z1)− 1

m
β(xα − z1)

∥∥∥∥
≥ 1

r
lim
α

∥∥∥∥xα − z − m− 1

m
β(xα − z1)

∥∥∥∥− 1

r

β

m
lim
α
‖xα − z1‖

≥ 1

r

∥∥∥∥(1− m− 1

m
β)x+

m− 1

m
βz1 − z

∥∥∥∥− β

m
.

On the other hand,

1

1 + β
z +

β

1 + β
z1 ∈ A for every β > 0,

and so we have

‖ṽ + βw̃‖U =
1

r
lim
U
‖xα − z + β(xα − z1)‖

=
1

r
lim
α

(1 + β)

∥∥∥∥xα − (
1

1 + β
z +

β

1 + β
z1)

∥∥∥∥ = 1 + β.

Thus, we deduce

‖ṽ − βw̃‖U + ‖ṽ + βw̃‖U

≥ 1

r

∥∥∥∥(1− m− 1

m
β)x+

m− 1

m
βz1 − z

∥∥∥∥− β

m
+ 1 + β

for every z ∈ A. Then we have

2(ρXU (β) + 1) ≥ 1

r
sup
z∈A

∥∥∥∥(1− m− 1

m
β)x+

m− 1

m
βz1 − z

∥∥∥∥− β

m
+ 1 + β

≥ rC
r
− β

m
+ 1 + β, m ≥ 1.

The last inequality is true for every m ≥ 1, so we obtain the following inequality

ρXU (β) ≥ rC
2r

+
β

2
− 1

2
.

Since XU is finitely representable in X, we have ρXU (β) = ρX(β) for all β and thus

ρX(β) ≥ rC
2r

+
β

2
− 1

2
,

rC ≤ (2ρX(β)− β + 1) r.
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Using the previous inequality, we can deduce that if ρ
′
(0) < 1/2 (which is equivalent

to ρX(β) < β/2 for some β, because ρX(β)/β is increasing) then

2ρX(β)− β + 1 < 1 for some β ∈ (0, 1) .

The condition ρ
′
(0) < 1/2 implies that X is reflexive. Thus, as a consequence of

Theorem 1.4, we obtain a sufficient condition so that a Banach space X has the fixed

point property for multivalued nonexpansive mappings.

Remark 2.1 In original proof authors used the modulus of squareness which was

given by C. Beńıytez, K. Przeslawski and D. Yost in [3].
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1. Introduction and Preliminaries

Let A be the class of normalized functions F (z) of the form

F (z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C, |z| < 1}. The subclasses of
the class A denoted by S∗(α), K(α) and Sp(µ, α) are, respectively, the subclasses
of starlike functions of order α (0 ≤ α < 1) in U , the convex functions of order α
(0 ≤ α < 1) in U , and the µ-spirallike functions of order α (0 ≤ α < 1) in U .

Corresponding to the functions given by

f(z) = 1 +

∞∑
k=1

dkz
k and g(z) = 1 +

∞∑
k=1

ekz
k, (1.2)

we introduce and investigate a class of functions Hλa1,b1,c1;a2,b2;c2(z) defined by

H(z) = Hλa1,b1,c1;a2,b2;c2(z) =
(2F1(a1, b1; c1; z) ∗ f(z))− 1

(2F1(a2, b2; c2; z) ∗ g(z))λ
(λ > 0; a1b1d1 = c1),

(1.3)
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which is analytic in the open unit disc U . We assume here and throughout this paper
that the functions occurring in the numerator and denominator of the right-hand side
of (1.3) are well defined in the open unit disk U , and that

ai > 0, bi > 0, ci > 0 (i = 1, 2).

The function 2F1(a, b; c; z) occurring in (1) is the Gaussian hypergeometric func-
tion defined by ([5])

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)kz
k

(c)k(1)k
(z ∈ U),

where a, b, c ∈ C (c 6= 0,−1,−2, ...), and (a)k is the Pochhammer symbol (or shifted
factorial when a ∈ N) defined in terms of the Gamma functions by

(a)k =
Γ(a+ k)

Γ(a)
=

{
1, k=0;

a(a+1)...(a+k−1), k∈N.

By applying elementary calculations, we observe (see below (2.3) also) that

H(0) = H′(0)− 1 = 0,

which asserts that the class H(z) ∈ A. On putting a1 = a2 = d1 = 1, b1 = c1, b2 = c2
and dj = 0 (j ≥ 2), we can write

Fλ(z) =
z

(1 +
∞∑
k=1

ekzk)λ
, (1.4)

which was investigated by Raina and Bansal [3] and contains as special cases the
classes due to Fukui et al. [1], Mitrinovic [2] and Reade et al. [4]. In this paper we
investigate the geometric properties of starlikeness, convexity and spirallikeness for
the function class H(z).

Throughout this paper (for convenience sake), we let Fk and Gk denote the fol-
lowing:

Fk =
(a1)k(b1)k
(c1)k(1)k

, Gk =
(a2)k(b2)k
(c2)k(1)k

. (1.5)

2. Main Results

Theorem 1. Let H(z) be defined by (1.3). Then H(z) ∈ S∗(α) (0 ≤ α < 1), provided
that

∞∑
k=2

Fk|dk|

(
k − α+ λ

∞∑
k=1

kGk|ek|

)
+

1

2

∞∑
k=1

AkGk|ek|



On a certain class of analytic functions... 55

+

∞∑
k=1

Gk|ek|
∞∑
k=2

(k − α)Fk|dk| ≤ 1− α, (2.1)

where Fk and Gk are given by (1.5) and Ak = kλ+ |kλ− 2(1− α)|.
Proof. In order to prove that H(z) ∈ S∗(α) (0 ≤ α < 1), it is sufficient to show that∣∣∣∣∣∣ 1− zH′(z)

H(z)

1− 2α+ zH′(z)
H(z)

∣∣∣∣∣∣ < 1 (z ∈ U). (2.2)

Differentiating (1.3) with respect to z, we get

zH′(z)
H(z)

=

∞∑
k=1

kFkdkz
k

∞∑
k=1

Fkdkzk
− λ

∞∑
k=1

kGkekz
k

1 +
∞∑
k=1

Gkekzk
. (2.3)

Using (2.2) and (2.3), we get∣∣∣∣∣∣ 1− zH′(z)
H(z)

1− 2α+ zH′(z)
H(z)

∣∣∣∣∣∣ =

∣∣∣∣C(z)

D(z)

∣∣∣∣ ,
where

C(z) =

∞∑
k=2

(1− k)Fkdkz
k

(
1 +

∞∑
k=1

Gkekz
k

)
+ λ

∞∑
k=1

kGkekz
k
∞∑
k=1

Fkdkz
k

and

D(z) =

∞∑
k=1

(1− 2α+ k)Fkdkz
k

(
1 +

∞∑
k=1

Gkekz
k

)
− λ

∞∑
k=1

kGkekz
k
∞∑
k=1

Fkdkz
k.

It follows that

|C(z)| ≤
∞∑
k=2

(k − 1)Fk|dk|+ λ

∞∑
k=1

kGk|ek|

+

∞∑
k=2

(k − 1)Fk|dk|
∞∑
k=1

Gk|ek|+ λ

∞∑
k=1

kGk|ek|
∞∑
k=2

Fk|dk| (2.4)

and

|D(z)| ≥ 2(1− α)−
∞∑
k=2

(1− 2α+ k)Fk|dk| −
∞∑
k=1

|kλ− 2(1− α)|Gk|ek|

−
∞∑
k=1

Gk|ek|
∞∑
k=2

(1− 2α+ k)Fk|dk| − λ
∞∑
k=1

kGk|ek|
∞∑
k=2

Fk|dk|. (2.5)
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Making use of the inequalities (2.1), (2.4) and (2.5), the assertion (2.2) is established
which proves Theorem 1.

The next result gives sufficient conditions such that the function H(z) defined by
(1.3) belongs to K(α) (0 ≤ α < 1).

Theorem 2. Let H(z) be defined by (1.3). Then H(z) ∈ K(α) (0 ≤ α < 1),
provided that there exist numbers p, q > 0, where 1

p + 1
q ≤ 1, satisfying the following

inequalities:
∞∑
k=1

[pk(λ+ 1) + 1− α]Gk|ek| ≤ 1− α (2.6)

and

∞∑
k=1

|kλ− 1| (kq + 1− α)Gk|ek|

+

(
1 +

∞∑
k=1

Gk|ek|

) ∞∑
k=2

k(1− α+ q(k − 1))Fk|dk|

+ qλ

∞∑
k=1

k2Gk |ek|
∞∑
k=2

Fk |dk|

+

∞∑
k=1

kGk |ek|
∞∑
k=2

(q |λ+ k(1− λ)|+ λ(1− α))Fk |dk| ≤ 1− α. (2.7)

Proof. Let the inequalities (2.6) and (2.7) be satisfied for the function H(z). We
prove that

<
{

1 +
zH′′(z)
H′(z)

}
> α (z ∈ U). (2.8)

After some calculations, we get

1 +
zH′′(z)
H′(z)

= 1−

(λ+ 1)

∞∑
k=1

kGkekz
k

1 +
∞∑
k=1

Gkekzk
+
M(z)

N(z)

 ,
where

M(z) = λ

∞∑
k=1

k2Gkekz
k−1

∞∑
k=1

Fkdkz
k −

∞∑
k=1

k(k − 1)Fkdkz
k−1

(
1 +

∞∑
k=1

Gkekz
k

)

−
∞∑
k=1

kGkekz
k−1

∞∑
k=1

Fkdk(λ+ k(1− λ))zk.
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and

N(z) = z +

∞∑
k=2

kFkdkz
k +

∞∑
k=1

Gkekz
k+1 +

∞∑
k=1

Gkekz
k
∞∑
k=2

kFkdkz
k

−λ

[ ∞∑
k=1

kGkekz
k−1 +

∞∑
k=1

kGkekz
k−1

∞∑
k=2

Fkdkz
k

]
.

It readily follows that

<
{

1 +
zH′′(z)
H′(z)

}
= 1−<

(λ+ 1)

∞∑
k=1

kGkekz
k

1 +
∞∑
k=1

Gkekzk
+
M(z)

N(z)



≥ 1−

∣∣∣∣∣∣∣∣
(λ+ 1)

∞∑
k=1

kGkekz
k

1 +
∞∑
k=1

Gkekzk

∣∣∣∣∣∣∣∣−
∣∣∣∣M(z)

N(z)

∣∣∣∣ (2.9)

and in view of (2.6), we infer that∣∣∣∣∣∣∣∣
(λ+ 1)

∞∑
k=1

kGkekz
k

1 +
∞∑
k=1

Gkekzk

∣∣∣∣∣∣∣∣ ≤
(λ+ 1)

∞∑
k=1

kGk|ek|

1−
∞∑
k=1

Gk|ek|
≤ 1− α

p
(0 ≤ α < 1). (2.10)

Also

|M(z)| ≤
∞∑
k=1

|k(kλ− 1)|Gk |ek|+ λ

∞∑
k=1

k2Gk |ek|
∞∑
k=2

Fk |dk|

+

∞∑
k=2

k(k − 1)Fk |dk|

(
1 +

∞∑
k=1

Gk |ek|

)

+

∞∑
k=1

kGk |ek|
∞∑
k=2

|λ+ k(1− λ)|Fk |dk|

and

|N(z)| ≥

(
1−

∞∑
k=1

|kλ− 1|Gk |ek|

)
−
∞∑
k=2

kFk |dk|

(
1 +

∞∑
k=1

Gk |ek|

)

−λ
∞∑
k=1

kGk |ek|
∞∑
k=2

Fk |dk|.

Making use of (2.7), we get ∣∣∣∣M(z)

N(z)

∣∣∣∣ ≤ 1− α
q

. (2.11)
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Applying (2.9) to (2.11), we conclude that the inequality (2.8) holds true and the
proof is complete.

Our next theorem gives a sufficient condition under which the function H(z) de-
fined by (1.3) is a µ−spirallike function of order α (0 ≤ α < 1).

Theorem 3. Let H(z) be defined by (1.3). Then H(z) ∈ Sp(µ, α) ( 0 ≤ α < 1,
|µ| < π

2 ), provided that

∞∑
k=2

(∣∣1− keiµ∣∣+ |Ak|
)
Fk|dk|

+

∞∑
k=1

(∣∣1 + eiµ(kλ− 1)
∣∣+
∣∣1− 2αcosµ− eiµ(kλ− 1)

∣∣)Gk|ek|
+

∞∑
k=1

Gk|ek|
∞∑
k=2

(∣∣1− keiµ∣∣+ |Ak|
)
Fk|dk|

+2λ

∞∑
k=1

kGk|ek|
∞∑
k=2

Fk|dk|

≤ |A1| −
∣∣1− eiµ∣∣ , (2.12)

where Ak = 1− 2αcosµ+ keiµ.

Proof. Suppose the inequality (2.12) holds true. We prove that H(z) ∈ Sp(µ, α)
(0 ≤ α < 1, |µ| < π

2 ). It is sufficient to show that

∣∣∣∣∣∣ 1− eiµ zH
′(z)
H(z)

(1− 2αcosµ) + eiµ zH
′(z)
H(z)

∣∣∣∣∣∣ < 1 (0 ≤ α < 1, |µ| < π

2
, z ∈ U). (2.13)

From (2.13), we obtain ∣∣∣∣∣∣ 1− eiµ zH
′(z)
H(z)

(1− 2αcosµ) + eiµ zH
′(z)
H(z)

∣∣∣∣∣∣ =

∣∣∣∣L(z)

Q(z)

∣∣∣∣ , (2.14)

where

L(z) =

∞∑
k=1

(
1− keiµ

)
Fkdkz

k +

∞∑
k=1

(
1 + (kλ− 1) eiµ

)
Gkekz

k+1

+λeiµ
∞∑
k=1

kGkekz
k
∞∑
k=2

Fkdkz
k +

∞∑
k=2

(
1− keiµ

)
Fkdkz

k
∞∑
k=1

Gkekz
k
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and

Q(z) = A1z +

∞∑
k=2

AkFkdkz
k +

∞∑
k=1

(
1− 2αcosµ+ (1− kλ)eiµ

)
Gkekz

k+1

−λeiµ
∞∑
k=1

kGkekz
k
∞∑
k=2

Fkdkz
k +

∞∑
k=1

Gkekz
k
∞∑
k=2

AkFkdkz
k,

and Ak is given byAk = 1− 2αcosµ+ keiµ. But

|L(z)| ≤
∞∑
k=1

∣∣1− keiµ∣∣Fk|dk|+ ∞∑
k=1

∣∣1 + (kλ− 1)eiµ
∣∣Gk|ek|

+λ

∞∑
k=1

kGk|ek|
∞∑
k=2

Fk|dk|+
∞∑
k=2

∣∣1− keiµ∣∣Fk|dk| ∞∑
k=1

Gk|ek| (2.15)

and

|Q(z)| ≥ |A1| −
∞∑
k=2

|Ak|Fk |dk| −
∞∑
k=1

∣∣1− 2α cosµ+ (1− kλ)eiµ
∣∣Gk |ek|

−λ
∞∑
k=1

kGk |ek|
∞∑
k=2

Fk |dk| −
∞∑
k=2

|Ak|Fk |dk|
∞∑
k=1

Gk |ek| . (2.16)

Under the condition (2.12), and by virtue of (2.14) to (2.16) the above inequality
(2.13) holds true, which proves Theorem 3.

It may be observed that for µ = 0, Theorem 3 eventually corresponds to Theo-
rem 1.

3. Some Consequences of Main Results

Since the class of functions defined by (1.3) involves the familiar Gaussian hyperge-
ometric function, therefore, Theorems 1-3 would find applications to several classes
of functions involving special functions which arise from the Gaussian hypegeometric
function by suitably specializing the parameters. For these special cases, one may
refer, for instance, to Srivastava and Karlsson [5].

Remark 1. For

a1 = a2 = d1 = 1, bi = ci(i = 1, 2), dj = 0(j ≥ 2),

Theorems 1-3 after some elementary simplification reduce to the results [3, pp. 404-
405, Theorems 1-3].

If we set
a1 = a2 = 1, bi = ci, (i = 1, 2), α = 0
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in Theorem 1, we get the following.

Corollary 1. Let f(z) = 1 +
∞∑
k=1

dkz
k and g(z) = 1 +

∞∑
k=1

ekz
k. Then the function

W(z) defined by

W(z) =

∞∑
k=1

dkz
k

(
1 +

∞∑
k=1

ekzk
)λ (λ > 0), (3.1)

is a starlike function provided that

∞∑
k=2

|dk|

(
k + λ

∞∑
k=1

k|ek|

)
+

∞∑
k=1

(kλ− 1) |ek|+
∞∑
k=1

|ek|
∞∑
k=2

k|dk| ≤ 1. (3.2)

An interesting consequence of Theorem 1 occurs when λ = 1, and Theorem 1(in this
special case on performing simple calculations) yield the following result.

Corollary 2. The function H1
a1,b1,c1;a2,b2,c2

(z) defined by (1.3) is in S∗(α) (0 ≤ α <
1), provided that

∞∑
k=2

Fk |dk|

(
k − α+

∞∑
k=1

kGk |ek|

)

+

∞∑
k=2

(k + α− 1)Gk |ek|+
∞∑
k=1

Gk |ek|
∞∑
k=2

(k − α)Fk |dk|

<

 (1− α)
(

1− a2b2
c2
|e1|
)
, 0 ≤ α < 1

2 ,

1− α
(

1 + a2b2
c2
|e1|
)
, 1

2 ≤ α < 1.
(3.3)

Next, if we set

a1 = a2 = 1, bi = ci(i = 1, 2), ei = en+j = 0 (1 ≤ i ≤ n− 1, j ∈ N), en 6= 0

in (1.3), then Theorem 2 for the function V(z) defined by

V(z) =

∞∑
k=1

dkz
k

(1 + enzn)λ
(3.4)

leads to the following result.

Corollary 3. Let the function V(z) be defined by (3.4). Then V(z) ∈ K(α) (0 ≤ α <
1), provided that there exist numbers p, q > 0 such that 1

p + 1
q ≤ 1 and the following

inequalities hold:
(pn(λ+ 1) + 1− α) |en| ≤ 1− α (3.5)
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and
∞∑
k=2

[k(δk − q) (1 + |en|) + n (q |λ+ k(1− λ)|+ λδn) |en|]

≤ 1− α− |λn− 1| δn |en| , (3.6)

where δn = qn+ 1− α.
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1. Introduction

In 1965 the concept of fuzzy subset was introduced by Zadeh[5]. Fuzzy subgroups and
its important properties were defined and established by Rosenfeld[3]. The notion of
fuzzy ideals of a semigroup was introduced by Kuroki[2]. Ersoy, Tepecik and Demir[1]
analyzed cartesian product of fuzzy prime ideals of rings. The aim of this paper is to
analyze some properties of cartesian product of fuzzy ideals, fuzzy prime ideals and
fuzzy semiprime ideals of semigroups.

2. Preliminaries

In this section we review some basic definitions which will be required in the sequel.
In what follows unless otherwise mentioned S stands for a semigroup.

Definition 2.1. [5] A fuzzy subset of a non-empty set X is a function µ : X → [0, 1].

Definition 2.2. [1] Let µ be a fuzzy subset of a set S. Then for t ∈ [0, 1] the set
µt={x ∈ S : µ(x) ≥ t} is called t-level subset or simply level subset of µ.

Definition 2.3. [2] A non-empty fuzzy subset µ of a semigroup S is called a fuzzy
left ideal(fuzzy right ideal) of S if µ(xy) ≥ µ(y)(resp. µ(xy) ≥ µ(x)) ∀x, y ∈ S.

Definition 2.4. [2] A non-empty fuzzy subset µ of a semigroup S is called a fuzzy
ideal of S if it is a fuzzy left ideal and a fuzzy right ideal of S.
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3. Fuzzy Prime and Fuzzy Semiprime Ideals

Definition 3.1. [4] A fuzzy ideal µ of a semigroup S is called a fuzzy prime ideal of
S if µ(xy) = max{µ(x), µ(y)}∀x, y ∈ S.

Definition 3.2. [4] A fuzzy ideal µ of a semigroup S is called a fuzzy semiprime ideal
of S if µ(x) ≥ µ(x2)∀x ∈ S.

Theorem 3.1. Let S be a semigroup and µ be a non-empty fuzzy subset of S. Then
the following are equivalent: (1) µ is a fuzzy prime ideal of S, (2) for any t ∈ [0, 1],
the t-level subset µt of µ(if it is non-empty) is a prime ideal of S.

Proof. Let µ be a fuzzy prime ideal of S. Let t ∈ [0, 1] be such that µt is non-empty.
Let for x, y ∈ S, xy ⊆ µt. Then µ(xy) ≥ t. Since µ is a fuzzy prime ideal of S, it
follows that max{µ(x), µ(y)} ≥ t. So µ(x) ≥ t or µ(y) ≥ t. Consequently, x ∈ µt or
y ∈ µt. Hence µt is a prime ideal of S.

Conversely, let every non-empty level subset µt of µ be a prime ideal of S. Let
x, y ∈ S and µ(xy) = t. Then µ(xy) ≥ t and xy ∈ µt. So µt is non-empty and
xy ⊆ µt. Since µt is a prime ideal of S, x ∈ µt or y ∈ µt. So µ(x) ≥ t or µ(y) ≥
t. So max{µ(x), µ(y)} ≥ t, i.e.,max{µ(x), µ(y)} ≥ µ(xy)......(1). Again since µ is
a fuzzy ideal of S, so we have µ(xy) ≥ µ(x) and µ(xy) ≥ µ(y). Then µ(xy) ≥
max{µ(x), µ(y)}.....(2). Combining (1) and (2), we have µ(xy) = max{µ(x), µ(y)}.
Hence µ is a fuzzy prime ideal of S.

Theorem 3.2. Let S be a semigroup and µ be a non-empty fuzzy subset of S. Then
the following are equivalent: (1) µ is a fuzzy semiprime ideal of S, (2) for any t ∈ [0, 1],
the t-level subset µt of µ(if it is non-empty) is a semiprime ideal of S.

Proof. Let µ be a fuzzy semiprime ideal of S. Let t ∈ [0, 1] be such that µt is non-
empty. Let for x ∈ S, x2 ∈ µt. Then µ(x2) ≥ t. Since µ is a fuzzy semiprime ideal of
S, then µ(x) ≥ µ(x2). It follows that µ(x) ≥ t. Consequently, x ∈ µt. Hence µt is a
semiprime ideal of S.

Conversely, let every non-empty level subset µt of µ be a semiprime ideal of S.
Let x ∈ S and µ(x2) = t. Then µ(x2) ≥ t and x2 ∈ µt. So µt is non-empty. Since µt

is a semiprime ideal of S, x ∈ µt. So µ(x) ≥ t ⇒ µ(x) ≥ µ(x2). Hence µ is a fuzzy
semiprime ideal of S.

4. Cartesian Product of Fuzzy Completely Prime
and Fuzzy Completely Semiprime Ideals

Definition 4.1. [1] Let µ and σ be two fuzzy subsets of a set X. Then the cartesian
product of µ and σ is defined by (µ× σ)(x, y) = min{µ(x), σ(y)}∀x, y ∈ X.

Lemma 4.1. Let µ and σ be two fuzzy subsets of a set X and t ∈ [0, 1]. Then
(µ× σ)t = µt × σt.
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Proof. Let (x, y) ∈ µt × σt ⇔ x ∈ µt and y ∈ σt ⇔ µ(x) ≥ t and σ(y) ≥ t ⇔
min{µ(x), σ(y)} ≥ t ⇔ (µ × σ)(x, y) ≥ t ⇔ (x, y) ∈ (µ × σ)t. Hence (µ × σ)t =
µt × σt.

Proposition 4.1. Let µ and σ be two fuzzy left ideals(fuzzy right ideals, fuzzy ideals)
of a semigroup S. Then µ× σ is a fuzzy left ideal(resp. fuzzy right ideal, fuzzy ideal)
of S × S.

Proof. Let µ and σ be two fuzzy left ideals of S and (a, b), (c, d) ∈ S × S. Then
(µ × σ){(a, b)(c, d)} = (µ × σ)(ac, bd) = min{µ(ac), σ(bd)} ≥ min{µ(c), σ(d)} (since
µ and σ are fuzzy left ideals of S) = (µ× σ)(c, d). Hence µ× σ is a fuzzy left ideal of
S × S. Similarly we can prove the other cases also.

Proposition 4.2. Let µ and σ be two fuzzy prime ideals of a semigroup S. Then
µ× σ is a fuzzy prime ideal of S × S.

Proof. By Proposition 4.3, µ×σ is a fuzzy ideal of S×S. Let (a, b), (c, d) ∈ S×S. Then
(µ×σ){(a, b)(c, d)} = (µ×σ)(ac, bd) = min{µ(ac), σ(bd)} = min[max{µ(a), µ(c)},max{
σ(b), σ(d)}]( since µ and σ are fuzzy prime ideals of S) = max[min{µ(a), σ(b)},min{µ(c)
, σ(d)}] = max{(µ × σ)(a, b), (µ × σ)(c, d)}. Hence (µ × σ) is a fuzzy prime ideal of
S × S.

Proposition 4.3. Let µ and σ be two fuzzy semiprime ideals of a semigroup S. Then
µ× σ is a fuzzy semiprime ideal of S × S.

Proof. By Proposition 4.3, µ×σ is a fuzzy ideal of S×S. Let (a, b) ∈ S×S. Then (µ×
σ)(a, b) = min{µ(a), σ(b)} ≥ min{µ(a2), σ(b2)}( since µ and σ are fuzzy semiprime
ideals of S) = (µ × σ)(a2, b2) = (µ × σ)(a, b)2. Hence (µ × σ) is a fuzzy semiprime
ideal of S × S.

Proposition 4.4. Let µ and σ be two fuzzy prime ideals of a semigroup S. Then the
level subset (µ× σ)t, t ∈ Im(µ× σ) is a prime ideal of S × S.

Proof. By Proposition 4.4, µ×σ is a fuzzy prime ideal of S×S. Let for (x, y), (m,n) ∈
S × S, (x, y)(m,n) ∈ (µ × σ)t. Then (µ × σ){(x, y)(m,n)} ≥ t ⇒ (µ × σ)(xm, yn) ≥
t ⇒ min{µ(xm), σ(yn)} ≥ t ⇒ µ(xm) ≥ t and σ(yn) ≥ t ⇒ xm ∈ µt and yn ∈
σt ⇒ x ∈ µt or m ∈ µt and y ∈ σt or n ∈ σt(since µt and σt are prime ideals of
S(cf. Theorem 3.3)). Hence (x, y) ∈ µt×σt or (m,n) ∈ µt×σt. Since by Lemma 4.2,
(µ×σ)t = µt×σt, we deduce that (x, y) ∈ (µ×σ)t or (m,n) ∈ (µ×σ)t. Consequently,
(µ× σ)t is a prime ideal of S × S.

Proposition 4.5. If the level subset (µ×σ)t, t ∈ Im(µ×σ) of µ×σ is a prime ideal
of S × S then (µ× σ) is a fuzzy prime ideal of S × S.

Proof. By Theorem 3.3, the proof follows immediately.

Proposition 4.6. Let µ and σ be two fuzzy semiprime ideals of a semigroup S. Then
the level subset (µ× σ)t, t ∈ Im(µ× σ) is a semiprime ideal of S × S.
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Proof. By Proposition 4.5, µ× σ is a fuzzy semiprime ideal of S × S. Let for (x, y) ∈
S × S, (x, y)(x, y) ∈ (µ× σ)t. Then (µ× σ){(x, y)(x, y)} ≥ t⇒ (µ× σ)(x2, y2) ≥ t⇒
min{µ(x2), σ(y2)} ≥ t ⇒ µ(x2) ≥ t and σ(y2) ≥ t ⇒ x2 ∈ µt and y2 ∈ σt ⇒ x ∈ µt

and y ∈ σt(since µt and σt are semiprime ideals of S(cf. Theorem 3.4)). Thus (x, y) ∈
µt × σt = (µ× σ)t(cf. Lemma 4.2). Hence (µ× σ)t is a semiprime ideal of S × S.

Proposition 4.7. If the level subset (µ× σ)t, t ∈ Im(µ× σ) of µ× σ is a semiprime
ideal of S × S then (µ× σ) is a fuzzy semiprime ideal of S × S.

Proof. By Theorem 3.4, the proof follows immediately.
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Introduction

Non-classical logic has become a considerable formal tool for computer science and ar-
tificial intelligence to deal with fuzzy information and uncertainty information. Many-
valued logic, a great extension and development of classical logic [1], has always been
a crucial direction in non-classical logic. In order to research the many-valued logical
system whose propositional value is given in a lattice, in 1990 Xu [10,13] proposed
the concept of lattice implication algebra. Since then this logical algebra has been
extensively investigated by several researchers (see e.g. [2, 7, 8]). In [11] Xu and Qin
introduced and studied the notions of filters and implicative filters in lattice impli-
cation algebras. In a lattice implication algebra, filters are important substructures,
they play a significant role in studying the structure and the properties of lattice
implication algebras. In[4], Jun et al. introduced the notions of positive implicative
filters and associative filters in lattice implication algebras, and investigated some of
their properties. In [5], Jun et al. defined and studied the notion of LI-ideals in lattice
implication algebras. In this paper, as an extension of the above-mentioned works,
we introduce the notions of a positive implicative LI-ideal and an associative LI-ideal
in a lattice implication algebra and discuss some of their properties. Connections to
related classes are investigated and equivalent conditions for both a positive implica-
tive LI-ideal and an associative LI-ideal are provided.
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Definition 1.1 A lattice implication algebra is defined to be a bounded lattice (L;∨,∧, 0, 1)
with order-reversing involution ”′” and a binary operation ” → ”. In the sequel the
binary operation ”→ ” will be denoted by juxtaposition. In a lattice implication alge-
bra L, the following hold:
(I1) x(yz) = y(xz);
(I2) xx = 1;
(I3) xy = y′x′;
(I4) xy = yx = 1⇒ x = y;
(I5) (xy)y = (yx)x;
(L1) (x ∨ y)z = (xz) ∧ (yz);
(L2) (x ∧ y)z = (xz) ∨ (yz);
for all x, y, z ∈ L.

A lattice implication algebra L is called a lattice H-implication algebra if it satisfies
x ∨ y ∨ ((x ∧ y)z) = 1 for all x, y, z ∈ L. We can define a partial ordering ≤ on a
lattice implication algebra L by x ≤ y if and only if xy = 1.

Definition 1.2 ([12,2.1 and 2.2]) In a lattice implication algebra L, the following
hold:
(P1) 0x = 1, 1x = x and x1 = 1.
(P2) xy ≤ (yz)(xz).
(P3) x ≤ y implies yz ≤ xz and zx ≤ zy.
(P4) x′ = x0.
(P5) x ∨ y = (xy)y.
(P6) ((yx)y′)′ = x ∧ y = ((xy)x′)′.
(P7) x ≤ (xy)y.
In a lattice H-implication algebra L, the following hold:
(P8) x(xy) = xy.
(P9) x(yz) = (xy)(xz).

Definition 1.3 ([11]) A subset F of L is called a filter of L if it satisfies for all
x, y ∈ L, (F1) 1 ∈ F ,
(F2) x ∈ F and xy ∈ F imply y ∈ F .

Definition 1.4 ([11]) A subset F of L is called an implicative filter of L if it satisfies
(F1) and
(F3) x(yz) ∈ F and xy ∈ F imply xz ∈ F for all x, y, z ∈ L.

Definition 1.5 ([4]) A subset F of L is called a positive implicative filter of L if it
satisfies (F1) and
(F4) x((yz)y) ∈ F and x ∈ F imply y ∈ F for all x, y, z ∈ L.

Definition 1.6 ([5]) Let L be a lattice implication algebra. A non-empty subset I of
L is called an LI-ideal of L if it satisfies (I1) 0 ∈ I and
(I2) (xy)′ ∈ I and y ∈ I imply x ∈ I.
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Definition 1.7 ([9]) A non-empty subset I of a lattice implication algebra L is said
to be an implicative LI-ideal (briefly, ILI-ideal) of L if it satisfies (I1) and
(I3) (((xy)′y)′z)′ ∈ I and z ∈ I imply (xy)′ ∈ I for all x, y, z ∈ L.

1. Positive implicative LI-ideals

Definition 2.1 A non-empty subset I of a lattice implication algebra L is said to be
a positive implicative LI-ideal (briefly, PILI-ideal) of L if it satisfies (I1) and
(I4) ((y(zy)′)′x)′ ∈ I and x ∈ I imply y ∈ I for all x, y, z ∈ L.

Lemma 2.1 Every LI-ideal of L has the following property:
x ≤ y and y ∈ I imply x ∈ I.

Proof. x ≤ y so xy = 1 then (xy)′ = 0 ∈ I by y ∈ I we have x ∈ I.

Lemma 2.2 Let I be a non-empty subset of L. Then I is an LI-ideal of L if and
only if for all x, y ∈ I and z ∈ L, (zy)′ ≤ x implies z ∈ I.

Proof. Let (zy)′ ≤ x. Then (zy)′x = 1 so ((zy)′x)′ = 0 ∈ I. Since I is a LI-ideal
and x ∈ I then (zy)′ ∈ I, also, y ∈ I so z ∈ I.
Conversely, since I 6= ∅ there exist x ∈ I which (0x)′ ≤ x then 0 ∈ I.
Now let (xy)′, y ∈ I. Since (xy)′ ≤ (xy)′, Putting X = (xy)′, Y = y and Z = x, thus
Z = x ∈ I.

Theorem 2.1 Let I be a non-empty subset of L. If I is an ILI-ideal of L, then I is
an LI-ideal of L.

Proof. In the definition of ILI-ideal, by replacing Y = 0 and Z = y, for all X,Y, Z ∈
L, we get the result.

Theorem 2.2 Let I be a non-empty subset of L. If I is an PILI-ideal of L, then I
is an LI-ideal of L.

Proof. In the definition of PILI-ideal putting X = y, Y = x and Z = x, for all
X,Y, Z ∈ L, we have the result.

Theorem 2.3 Let I be an LI-ideal of L. Then I is an PILI-ideal of L if and only
if for all x, y ∈ L,
(LI5) (x(yx)′)′ ∈ I implies x ∈ I.

Proof. Assume that I is a positive implicative LI-ideal of L and let X = 0, Y = x
and Z = y. Then

((Y (ZY )′)′X)′ ∈ I and X ∈ I imply Y ∈ I,
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i.e.,
((x(yx)′)′0)′ ∈ I and 0 ∈ I imply x ∈ I.

It means that, (x(yx)′)′ ∈ I implies x ∈ I.
Conversely, since I is an LI-ideal of L, (y(zy)′)′ ∈ I. Hence, by (LI5), y ∈ I.

Theorem 2.4 Let I be an LI-ideal of a lattice implication algebra L. Then the
following are equivalent:
(i) I is an ILI-ideal of L;
(ii) ((xy)′y)′ ∈ I implies (xy)′ ∈ I, for all x, y ∈ L;
(iii) ((xy)′z)′ ∈ I implies ((xz)′(yz)′)′ ∈ I, for all x, y, z ∈ L;
(iv) (((xy)′z)′u)′ ∈ I and u ∈ Iimply ((xz)′(yz)′)′ ∈ I, for all x, y, z, u ∈ L;
(v) ((xy)′z)′ ∈ I and (yz)′ ∈ I imply (xz)′ ∈ I.

Proof. By [9, Theorem 3.8], we have (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). Therefore it is
sufficient to show (v)⇒ (ii) and (iv)⇒ (v).
(v) ⇒ (ii): In (v) putting z = y, we have ((xy)′y)′ ∈ I. and (yy)′ ∈ I which imply
(xy)′ ∈ I. Hence ((xy)′y)′ ∈ I and 0 ∈ I imply (xy)′ ∈ I. Thus (v)⇒ (ii).
(iv) ⇒ (v): In (iv) putting u = 0, we have (((xy)′z)′0)′ ∈ I and 0 ∈ I, which imply
((xz)′(yz)′)′ ∈ I for all x, y, z ∈ L. So (((xy)′z)′ ∈ I implies ((xz)′(yz)′)′ ∈ I, for all
x, y, z ∈ L.
Since, by (v), (yz)′ ∈ I and I is an LI-ideal of L, so (xz)′ ∈ I.

The converse of Theorems 1 and 2 are not correct, by the following examples.

Example 2.1 Let L = {0, a, b, c, d, 1} be a set with a partial ordering. Define a unary
operation ”′” and a binary operation denoted by juxtaposition on L as follows:

0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

x x′

0 1
a c
b d
c a
d b
1 0

Define ∨- and ∧- operations on L as follows:
x ∨ y = (xy)y,
x ∧ y = ((x′y′)y′)′,

for all x, y ∈ L. Then L is a lattice implication algebra. It is easy to check that
I = {0, c} is an LI-ideal of L. Notice that I is neither an ILI-ideal nor an PILI-
ideal. For both of them take x = a and y = d in the definitions of an ILI-ideal and
an PILI-ideal, we deduce that:
((xy)′y)′ = ((ad)′d)′ = (b′d)′ = 0 ∈ I but (xy)′ = (ad)′ = d 6∈ I, and
(y(xy)′)′ = (d(ad)′)′ = (db′)′ = 0 ∈ I but y = d 6∈ I.

Theorem 2.5 Let I be a non-empty subset of L. If I is a PILI-ideal of L, then it
is an ILI-ideal of L.
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Proof. Let ((xy)′z)′ ∈ I and (yz)′ ∈ I. It is sufficient to show that (xz)′ ∈ I. We
have,

((xy)′z)′ = (z′(xy))′ = (x(z′y))′ = (x(y′z))′ = (y′(xz))′ = ((xz)′y)′.

On the other hand, since for each u, v, w ∈ L we have (uv) ≤ (vw)(uw), we deduce
that
(xz)′y ≤ (yz)((xz)′z)⇒ ((yz)((xz)′z))′ ≤ ((xz)′y)′

⇒ (((xz)′z)′(yz)′)′ ≤ ((xz)′y)′.
Now by lemma 2, since ((xz)′y)′, (yz)′ ∈ I, we have ((xz)′z)′ ∈ I. Also
((xz)′z)′ = (((xz)′0)′z)′

= (((xz)′(0z)′)′z)′

= (((xz)′((xx)′z)′)′z)′

= (((xz)′((xz)′x)′)′z)′.
Hence by (I5), we have

((x(x(xz)′)′)′z)′ = ((xz)′(x(xz)′)′)′.

By putting u = (xz)′ and v = x, from the last equation we get (u(vu)′)′ ∈ I. Since I
is a positive implicative LI-ideal of L, u ∈ I. Thus (xz)′ ∈ I.

Theorem 2.6 In a lattice implication algebra, any PILI-ideal is an ILI-ideal. Con-
versely, in a lattice H-implication algebra, any ILI-ideal is a PILI-ideal.

Proof. Theorem 5 shows that if I is PILI-ideal of L then it is an ILI-ideal. Con-
versely assume that I is an ILI-ideal of L and ((y(zy)′)′x)′ ∈ I and x ∈ I. Then we
have (y(zy)′)′ ∈ I and

(y(zy)′)′ = ((zy)y′)′ = ((y′z′)y′)′ = (y′)′.

Since L is H-implication, we get the last equation. So y = (y(zy)′)′ ∈ I.

Theorem 2.7 Let S be a non-empty subset of a lattice implication algebra L. Assume
that S′ = {x′ : x ∈ S}. Then S is a positive implicative filter of L if and only if S′ is
a PILI-ideal of L.

Proof. Let S be a positive implicative filter of L. Then 1 ∈ S, so 1′ = 0 ∈ S′.
Let ((y(zy)′)′x)′ ∈ S′ and x ∈ S′. There exist some u, v ∈ S such that u = (y(zy)′)′x
and v = x′. So x′((y′z′)y′) = x′(y(zy)′) = u ∈ S and v = x′ ∈ S. It follows that
y′ ∈ S, as S is a positive implicative filter. Hence y ∈ S′. Thus S′ is a PILI-ideal of
L.
Conversely, if S′ is a PILI-ideal of L, then 0 ∈ S′. So 1 = 0′ ∈ (S′)′ = S. Let
x((yz)y) ∈ S and x ∈ S. Then (x((yz)y))′ ∈ S′ and x′ ∈ S′. So (((yz)y)′x′)′ ∈ S′

and x′ ∈ S′. Hence ((y′(z′y′)′)′x′)′ ∈ S′ and x′ ∈ S′. Thus y′ ∈ S′, as S′ is a
PILI-ideal of L. That is y ∈ S, hence S is a positive implicative filter of L.

Theorem 2.8 Let I and J be two LI-ideals of a lattice implication algebra L with
I ⊆ J . If I is a PILI-ideal of L, then so is J .
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Proof. Let (x(yx)′)′ ∈ J . Take t = (x(yx)′)′, X = (xt)′ and Y = x. Then
(Y X)′ = (x(xt)′)′ = (x(x(x(yx)′)′)′)′ = ((x(yx)′)′)′ = t′. So
(X(Y X)′)′ = ((xt)′t′)′ = (t(xt))′ = (x(tt))′ = 0 ∈ I and so X ∈ I by I is PILI-ideal
of L. Since I ⊆ J , (xt)′ = X ∈ J . t ∈ J imply that x ∈ J . So J is PILI-ideal of L.

2. Associative LI-ideals

Definition 3.1 Let x be a fixed element of L. A subset I of L is called an associative
LI-ideal of L with respect to x if it satisfies (I1) and
(I5) ((zy)′x)′ ∈ I and (yx)′ ∈ I imply z ∈ I.
An associative LI-ideal with respect to all x 6= 1 is called an associative LI-ideal.

An associative LI-ideal with respect to 1 is whole algebra L. An associative LI-ideal
with respect to 0 is coincident with an LI-ideal.

Example 3.1 Let L = {0, a, b, c, d, 1} be a set as a partial ordering. Define a unary
operation ”′” and a binary operation denoted by juxtaposition on L as follows:

0 a b c d 1
0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

x x′

0 1
a d
b c
c b
d a
1 0

Define ∨- and ∧- operations on L as follows:
x ∨ y = (xy)y,
x ∧ y = ((x′y′)y′)′,

for all x, y ∈ L. Then L is a lattice implication algebra. It is easy to check that
I = {0, c, d} is an LI-ideal of L.It is easy to check that I is an associative LI-ideal of
L with respect to 0, c, d.
Take x = z = a and y = c,
((ac)′a)′ = (c′a)′ = 0 ∈ I and (ca)′ = d ∈ I but z = a 6∈ I, so I is not an associative
LI-ideal of L with respect to a.

Proposition 3.1 Every associative LI-ideal with respect to x contains x itself.

Proof. If x = 0 then ((zy)′0)′ ∈ I and (y0)′ ∈ I imply z ∈ I.
So (zy)′ ∈ I and y ∈ I imply z ∈ I, i.e., I is an LI-ideal of L that contains 0.
If x = 1 then I = L.
If x 6= 0, 1, take y = 0 and z = x then ((x0)′x)′ = (xx)′ = 0 ∈ I and (0x)′ = 0 ∈ I
imply x ∈ I.

Theorem 3.1 Every associative LI-ideal of L is LI-ideal of L.
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Proof. If (xy)′ ∈ I and y ∈ I then ((xy)′0)′ ∈ I and (y0)′ ∈ I. Since I is an
associative LI-ideal of L then x ∈ I.

Theorem 3.2 Let I is an LI-ideal of L. I is an associative LI-ideal if and only if
((zy)′x)′ ∈ I implies (z(yx)′)′ ∈ I.

Proof. (⇐) If ((zy)′x)′ ∈ I and (yx)′ ∈ I then (z(yx)′)′ ∈ I and (yx)′ ∈ I. Since I
is an LI-ideal of L then z ∈ I.
(⇒) Let ((zy)′x)′ ∈ I then
(((z(yx)′)′(zy)′)′x)′ = (((z(yx)′)′x)′(zy)′)′

= (((zx)′(yx)′)′(zy)′)′

= 1′ = 0 ∈ I
The last equation is comes from zy ≤ (yx)(zx) which implies ((zx)′(yx)′)′ ≤ (zy)′.
From assumption ((zy)′x)′ ∈ I and I is an associative LI-ideal so (z(yx)′)′ ∈ I.

Theorem 3.3 Let I is an LI-ideal of L. I is an associative LI-ideal if and only if
((yx)′x)′ ∈ I implies y ∈ I.

Proof. (⇒) ((yx)′x)′ ∈ I then (y(xx)′)′ ∈ I so (y0)′ = y ∈ I.

(⇐) ((((z(yx)′)′x)′x)′((zy)′x)′)′ = (((((z(yx)′)′x)′x)′((zy)′x)′)′0)′

= (((((z(yx)′)′x)′x)′((zy)′x)′)′(((zx)′(yx)′)′(zy)′)′)′

= (((((z(yx)′)′x)′x)′((zy)′x)′)′(((z(yx)′)′x)′(zy)′)′)′

= (((((z(yx)′)′x)′x)′(((z(yx)′)′x)′(zy)′)′)′((zy)′x)′)′

= ≤ (((zy)′x)′((zy)′x)′)′ = 0.

So ((((z(yx)′)′x)′x)′((zy)′x)′)′ ∈ I, (((z(yx)′)′x)′x)′ ∈ I

Assumption gives us (z(yx)′)′ ∈ I. By last theorem I is an associative LI-ideal.
Equation in second line comes from zy ≤ (yx)(zx) so ((zx)′(yx)′)′ ≤ (zy)′ that
(((zx)′(yx)′)′(zy)′)′ = 0.
Inequality in second line comes from xy ≤ (zx)(zy) so ((zy)′(zx)′)′ ≤ (xy)′.
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1. Introduction

One of the most important problem of the knowledge-based systems is the knowledge
representation. This is explained by the fact that a form of representation has a
significant influence on the characteristics and the properties of the system. In order
to manipulate different knowledge from the real world using a computer, it is needed
to make a modeling (or formalization). In this paper the several models of associa-
tive knowledge representation (in the HOMEOPAT system) which are specified by
the semantic networks are proposed. The properties of the corresponding systems
differ in effectiveness of different problems solving as well as in approaches to their
solving. Specifically, the advantages of the ”precise” model of the semantic network
[1-2] include the fact that insignificant modification can be dealt by the most powerful
method of theorem proving - the resolution rule. The advantages of ”imprecise” model
[3,10] lead to the possibilities in solving the problems with fuzzy target settings. Neu-
ral networking models [4] allow the creation of dynamic diagnostic systems by using
the learning, therefore it make possible to scale the sphere of covered problems.
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2. Logical model of the associative knowledge repre-
sentation

In this section the general questions of knowledge representation using semantic net-
work, and the ways of its logical description are described. As known, the basic
functional element of semantic network is the structure which consist two compo-
nents - nodes and arcs which connect nodes. Each node represents some term, and
arc is a relationship between a pair of terms. It is possible to claim that each of
such pairs describes a fact. The nodes are marked with names of corresponding re-
lationship. The arcs have direction, due to which there appears a ”subject-object”
relationship between the terms. Each node can be connected with any number of
other nodes, which makes up a network of facts. From the logical point of view the
structure of semantic network can be considered as a predicate with two arguments.
Argument is node, and a predicate is a directed arc, which connects these nodes. The
correct choice of relationship give the possibility to describe the complex collections
of facts. Generally, the logical model of system knowledge is built in terms of formal
system, which is represented by set of the following components:

1. Two finite alphabets K1 and K2;

2. Symbols x,y – variables, which get the values from K1 and K2;

3. Two single-placed predicate symbols P , R and one double-placed – Q;

4. Implication sign ” → ” and punctuation sign ”,”;

5. A finite sequence A1, A2, ... , Ak of the correctly build formulas to according
with the definition below.

The corresponding elements of sets K1 and K2 are marked as c1, c2, ... , cn and
p1, p2, ... , pm.

The symbols of the alphabet K1 and variable x are called a term of the system
above alphabet K1. The symbols of the alphabet K2 and variable y are called a
theorem above K2.

An atomic formula is an expression like P (t1), R(t2), Q(t1, t2), where t1, t2 are
terms above alphabets K1 and K2.

The correctly built formula (CBF) of the system is an atomic formula and expres-
sions like:

P (t1) → Q(t2, t1) → R(t2);
R(t2) → Q(t2, t1) → P (t1).
CBF without variables is a claim. Consequential claim of the system is any axiom

or formula without variables, which can be consequently received from the axioms by
a finite use of the following rules, which are called the consequential rules:

1. Replacement of symbols x, y with symbols from K1 K2;

2. Consequence, resulting formula X2 from X1 and X1 → X2 in condition, that
X1 is atomic formula.
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Let’s bring up the interpretation of the system of predicates:
P (x) – ”patient has symptom x”;
Q(y, x) – ”medicine y has symptom X”;
R(y) – ”prescribe y to the patient”.
This way the formal knowledge system can be specified by a set of axioms:
Q(x, y);
P (x) → Q(y, x) → R(y);
R(y) → Q(y, x) → P (x);
P (x).
If alphabets K1 and K2 represent the sets of drugs and symptoms, the factual

model of knowledge can be described by axioms of this system, putting the elements
of corresponding alphabets instead of x and y variables.

Let’s show that if a patient has symptom x, he should be prescribed the drug y.
Let system has the following claims:

P (x); (1)

P (x)→ Q(y, x)→ R(y); (2)

Q(y, x); (3)

R(y), (4)

where (1), (2), (3) are axioms, (4) is the claim that we should prove.
In order to use the resolutions method, we need to represent the claim in the

disjunctive form and take the negation of the conclusion. So we have the prove:

P (x); (5)

∼P (x) ∨ ∼Q(y, x) ∨R(y) from(2); (6)

Q(y, x); (7)

∼ R(y) conclusion negation; (8)

∼Q(y, x) ∨R(y) from (1) and (2); (9)

R(y) from (3) and (5); (10)

� from (4) and (6). (11)

We have an empty disjunct so the conclusion is true.
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3. Fuzzy models of associative knowledge represen-
tation

In many interpretation and diagnostics tasks the unreliable knowledge and facts are
used. Unreliability comes up as a consequence of absence of a part of the data or
doubt in correctness of these data. Representing such knowledge using the notation
1 – true, and 2 – false isn’t always possible, so we use the numbers from the interval
[0;1].

The first method, which use indetermination, was suggested in the MYCIN [5]
expert system, which was used for choosing the treatment course of the inflectional
diseases. In this method we operate with the coefficients of confidence which lay in
[-1;1], and the proper method of formula combination is used. The similar approach
was presented in one of the HOMEOPAT system versions, as a way in making up the
diagnosis and drugs prescription.

The general formulation of the problem is following: let X = {X1, X2, ..., Xk} is
some set of the objects and C = {C1, C2, ..., Cn} is some set of their characteristics
and relationship between these objects is (∞ : ∞ ), so each element of the X can have
many corresponding objects from C set, and vice-versa. The relationship between the
elements of these sets can be displayed as a diagram called semantic network. The
arrows, connecting nodes Xiand Cj , mean that object Xi has a characteristic Cj .

Such a diagram can be represented as fuzzy subset R of the Cartesian product
X × C, which is defined like:

R =
∫
X×C µ R(x, c)/(x, c).

Accordingly, the object Xi with a set of characteristics C can be represented as:

R =
∫
C
µ R(Xi, c)/(Xi, c).

If we consider two fuzzy sets

R =
∫
C
µ 1/(Xi, c)

and

S =
∫
C
µ (Xi, c)/(Xi, c),

which define the object Xi and some of its approximation, taking into account the
coefficient of proximity, such as fuzzy sum

β =
∫
C

(1− µ (Xi, c))
1/2,

it is possible, using the current fuzzy characteristics of the object, to find the approx-
imation with a minimal coefficient of proximity. Consequently we can find the most
plausible object (or objects).

In addition it can be shown, the more characteristics is found and the more mea-
sures of independence of these characteristics are, the more precise of the result will
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be. Another way, which uses the definition of linguistic variable was represented in
[6].

The linguistic variable is a set < β, T, U,G,M >, where β is the name of the
variable, T is the set of its values which are the names of fuzzy variables and the
domain of definition of each value from T is the set X. Set T is called basic term-set
of the linguistic variable; U – the set of syntax rules, which generate terms using
quantificators; G – syntax procedure, which operate with the elements of term-set T ,
as a result to generate new terms (values); M – semantic procedure, which transform
every new value, which is created by procedure G, to a new fuzzy variable, so the
procedure generate a fuzzy set.

Logically-linguistic method of system description is based on the fact that the
system functionality is described using the simple language in terms of linguistic
variables. The input and output parameters of the system are considered as linguistic
variables and the qualitative description of the process is represented by a set of claims
in the following form:

L1: if < a11 > and/or < a12 > and/or ... and/or < a1m > , then < b11 > and/or
... and/or < b1n > ,

L2: if < a21 > and/or < a22 > and/or ... and/or < a2m > , then < b21 > and/or
... and/or < b2n > ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lk: if < ak1 > and/or < ak2 > and/or ... and/or < akm > , then < bk1 > and/or
... and/or < bkn > ,

where < aij > ,i = 1, 2, ..., k; j = 1, 2, ...,m are complex fuzzy claims, which
are defined on the values of input linguistic variables, and < bij > , i = 1, 2, ..., k;
j = 1, 2, ..., n are fuzzy claims, defined on the values of output linguistic variables.
Such a set is called an fuzzy knowledge base.

Using the rules of conversion of conjunctive and disjunctive forms, the description
of the system can be displayed in the following way:

L1 : if < A1 >, then < B1 >,
L2 : if < A2 >, then < B2 >,
....................
Lk : if < Ak >, then < Bk >,

where A1, A2, ..., Ak – fuzzy sets, which are defined on the Cartesian product X uni-
versal sets of input linguistic variables; B1, B2, . . . , Bk – fuzzy sets, which are defined
on the Cartesian product Y universal sets of output linguistic variables.

The set of implications {L1, L2, ..., Lk} displays the functional interconnection of
input and output variables and is base for building the general indistinct relation R,
which is defined on the Cartesian product XxY of input and output variable sets.

Output of the system is based on the compositional rule of Zade, which is formu-
lated in the following way: if a fuzzy set A is defined on the set X , then compositional
rule B = A ◦R,where R is an fuzzy relationship, which declares an fuzzy implication,
defines an fuzzy set B on the set Y with a membership function:
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Figure 1: Fuzzy logical output.

µB(y) =
⋃
x∈X

[µA(x)
⋂

µR(x, y)]

So, in this case, the compositional rule defines a law for fuzzy model system
functionality.

Functional scheme of the process of fuzzy output in a simplified form is displayed
in the Figure 1. As it is shown on the scheme the execution of the first stage of output
which is called phasification is done by a phasificator. The machine of fuzzy logical
output is responsible for a procedure of fuzzy output, which form the second stage of
the output basing on the given fuzzy knowledge base (rule set) and the composition
stage. Dephasificator executes the last stage of fuzzy output – dephasification.

4. Diagnostics bases on neural networks

As a rule, as a consequence of the cerebrum study and mechanisms of its functioning
there have been created new computer models, namely artificial neural networks (NN).
The tasks of the office automation processes based upon the research in the sphere of
the artificial intelligence (AI) are of current importance to present day. NN permit to
solve applications such as pattern recognition, modeling, fast data conversion (parallel
computational processes), identifications, management, and expert systems creation
[7]

Theoretically, NN can solve a wide frame of tasks in the specific data domain.
(as it is the human brain model prototype), but it is still not practically possible to
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Figure 2: General view of neuron.

create the integrated universal NN for the specific data domain at present, since there
is no integrated construction algorithm (functioning) of the NN. The moment to date
the specific structure NN and with the defined learning algorithms are used for the
solution of the concrete group of tasks out of the fixed data domain.

As it is well-known, each neuron has a number of qualitative characteristics, such
as condition (excited or dormant), input and output connections. The one-way only
connections, mated with the inputs of the other neurons are called synapses and the
output connection of the given neuron from which the signal (actuating or dormancy)
comes on the synapses of the other neurons are called axon. The neuron overview
is presented on figure 2. Per se, the functioning of every neuron is relatively simple.
As a rule, the set of the X = [x1, x2, x3, . . . xn] signals come to the neuron input.
Each of the signals may be the output of the other neuron or source. Every input
signal is multiplied on the corresponding angular coefficient W = [w1, w2, w3, . . . wn].
It complies with the force of the synapse of the biological neuron. The products of
the wixi are summarized and come on the adding element. To initialize the networks,
the input x0 (x0 = +1) and the weighting factors of the synaptic ties w0 are specially
entered. The neuron condition in the current moment is defined as the weighted total
of its inputs:

S =

n∑
i=1

xiwi + x0w0

The neuron output is the output of its condition:

Y = F (S)

The F is the function of activation. It is monotonous, contiguously differentiable
on the interval either (-1,1), or (0,+1).

In the multilayer neuronal networks (MNN) the basic elements outputs of each
layer come to the inputs of all the basic elements of the next layer. The activation
function F (S) is chosen as being the same for all the neurons of the network. In [7] the
MNN it is determined in such a symbol form NK

n0,n1,...,nR
, where K is the number of

the layers in the network, n0 is the number of the network inputs; ni(i = 1,K−1) - the
number of the basic elements in the - interlayers, nK - the number of the basic elements
in the output layer and simultaneously the number of the outputs q1, ..., qnK

of the
MNN. The intermediary a layer has na neurons. There are no connections between
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the basic elements in the layer. The layer basic elements outputs come to the neurons
inputs of only the next (+1) layer. The output for any neuron is determined as being

q
(a)
i = f(

na−1∑
j=1

w
(a)
i,j q

(a−1)
1 + wa

i,0q
(a−1)
0 ) = f(s

(a)
i ).

5. Specialized NN in HOMEOPATH system

The scientists have been into the development of the mathematical methods solutions
of medicinal tasks for many years already. The effectiveness of the similar mathemati-
cal methods may be followed by the set of the medical diagnostics systems, developed
in the last time. The general trait of these systems is their dependence on the specific
methods of the group data processing, poorly applied to the unit objects and, also,
on the features of the medical information [8].

The neuronal networks (NN) are easy-to-use instruments of the information mod-
els presentation. In the general case, the network receives some input signal from the
outer world and passes it through itself with the conversion in each of the neurons.
Hence, the signal processing is being made in the process of its passage through the
network connections, the result of which is the specific output signal. For the pur-
poses of the neuronal network designing in the system of HOMEOPATH there has
been chosen the mostly spread structure of the neuronal networks – multilayer one.
This structure imports that every neuron of the arbitrary layer is connected with all
the outputs and inputs (axons) of the preceding layer or with all the NN inputs in
the case of the first layer. In other words, the network has the following structure of
the layers: the input, the intermediate (latent) and output. Such neuronal networks
are also called fully connected [7].

For the solution of the diagnostics task in the system of HOMEOPATH the NN
of the following architecture is being used (Figure 3).

The task of the habituation of the MNN in classical form could be presented as
following. Let there is specified some series of x∗ input data. It is requested to
find such solution x, which can be used to classify the newly presented input data.
The criterion R(x, x∗) determines the quality of solution. The variety of solutions

x is determined by the choice of the weighting factors w
(a)
i adjustment algorithm.

Such definition of the problem allow to build the training process which comes to the
receipt of the best solution out of the series of possible ones. In other words, the MNN
training is the process of data x∗ accumulation and, concurrently, the process of the
choice of solution x. The NN of the HOMEOPATH system uses the algorithm of the
inverse distribution the gist of which is in the distribution of the error signals from
the NN outputs to its inputs in the direction back to the direct signals distribution
in the usual mode of operation (identification regime). In other words, using the
technologies of the series tuning of neurons starting with the last output layer and
finishing with the tuning of the first layer elements. The NN habituation may be done
the necessary number of times. For the habituation we use so called δ rule, which lies
in the realization of the training strategy with the ”teacher”. Let us label as y∗ the
required neuron output, y is the real output. The error of the training is calculated
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Figure 3: Architecture neuron network.

according to the following formula δ = y∗−y in the algorithm of the gradient descent
(the weighted factor) wi(k+ 1) = wi(k)− γδxi, γ > 0 , where γ is the ”strengthening
of the algorithm” factor, xi is the i input of the neuron synaptic connection.

Conclusions

The specification of the data domain of the system allows a transition from the seman-
tic network model to the logical representation in order to the further implementation
of resolutions method for discovering the true claims of semantic network.

What relates to the indistinct models of knowledge representation, the approach,
which is suggested in the paper, is rather effective in solving the problems of diagnos-
tics on the models, which can be described by binary semantic networks. Naturally,
such networks could be generalized to the more complex cases with the corresponding
modification of fuzzy arithmetic.

The main advantage of linguistic model is universality. It doesn’t much matter,
what kind of data are in the input – concrete numerical values or some kind of
indeterminacy, which is described by an fuzzy set. However such universality leads
to a greater complexity, we have to use the space with an m × n dimensions. That
is why the general fuzzy model can be simplified by reducing the knowledge base
implication, as well as the procedure for teaching the model.

The difficulties of using neural networks for diagnosing are connected with the
complexity of the present databases. The further studies in this way are the search
of a model with an effective learning procedure. Some results of these studies are
already published in [9].

References

[1] Dudka T., The questions of desigin of diagnostical system, Programming prob-
lems. – 1999. – Vol. 2 – p.130 –134 (in Ukrainian).

[2] Provotar A.I., Dudka T., Gorchko B. Application of resolution method in seman-
tic networks, Programming problems. -2000.-Vol. 1-2. - p.453-459 ( in Russian).



84 A. Provotar, L. Katerynych

[3] Dudka T., Provotar A.I., Application of fuzzy sets and level numbers for solution
of problem of selection, Programming problem. –2001.–Vol 1. –p.21-26.

[4] Katerynych L., Provotar A.I. Neural networks diagnostics in HOMEOPATH sys-
tem, Proceedings of XIII-th International Conference: Knowledge, Dialogue, So-
lution. –Sofia, 2007. –Vol 1. – p.64-68.

[5] Shortliffe E. H., Computer-basedmedical consultation: MYCIN, – New York. –
American Elsevier. - 1976.

[6] Koval A., Logical-linguistic model in fuzzy systems, Proceedings of Interna-
tional scientific and practical conference in programming “UkrProg’2008”. –
Programming problem. –2008. –Vol. 1–2. – p.453-459 (in Russian).

[7] Barski A., Neural networks: discernment, control, decision-making, – Moscow. –
”Finansi i statistika” - 2004 (in Russian).

[8] Gorban A., Dunin-Barkovski B., Kirdin.H. and others., Neuroinformatics, –
Novosibirsk – ”Nauka” - 1998 (in Russian).

[9] Katerynych L., Provotar A.I., Synthesis of neural networks based on informa-
tional granules, Proceedings of XIV-th International Conference: Knowledge,
Dialogue, Solution. –Sofia, 2008. –Vol 1. – p.74-82.

[10] Rutkovska D., Pilinski M., Rutkovski L., Neural networks, genetic algorithms
and fuzzy systems, –Moscow. –Telecom. -2006.

A.Provotar
email: provotar@unicyb.kiev.ua

L.Katerynych
email: katerinich@rambler.ru

Taras Schevchenko Kiev
National University Faculty of Cybernetics,
2, Academician Glushkov Avenue, Building 6

Received 10.06.2009



J o u r n a l of
Mathematics
and Applications

No 32, pp 85-90 (2010)

COPYRIGHT c© by Publishing Department Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

On certain functions with positive real part

Roxana Şendruţiu
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1. Introduction and preliminaries

We denote by H[U ] the class of holomorphic functions in the open unit disc. For
a ∈ C and n ∈ N∗ we let

H[a, n] = {f ∈ H[U ], f(z) = a+ anz
n + an+1z

n+1 + ..., z ∈ U}

and
An = {f ∈ H[U ], f(z) = z + an+1z

n+1 + an+2z
n+2 + ..., z ∈ U}

with A1 = A.
In order to prove the new results we shall use the following lemma, which is a

particular form of Theorem 2.3.i [3, p.35].

Lemma 1.1. [3] Let ψ : C2 × U → C a function which satisfies

Re ψ(ρi, σ; z) ≤ 0, (1.1)
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where ρ, σ ∈ R, σ ≤ −n2 (1 + ρ2), z ∈ U and n ≥ 1.

If p ∈ H[1, n] and

Re ψ (p(z), zp′(z); z) > 0 (1.2)

then

Re p(z) > 0.

2. Main results

Following the work done in [4] we obtain the next theorem.

Theorem 2.1. Let a, b ∈ R+, α, β, γ ∈ C, Re α ≥ 0, α+β ∈ R+, αa+βb+γa ∈ R+,

δ <

(
n3

8
+ a3

)
Re α+

3an2

4
(α+ β) +

3an

2
(αa+ βb+ γa) +

3ab2

4
Re β

and n be a positive integer. Suppose that the functions A,B : U → C satisfy

(i) Re A(z) > −3n3

8
Re α− 3an2

2
(α+ β)− 3an

2
(αa+ βb+ γa) ;

(ii) Im 2B(z)≤4

[
3n3

8
Re α+

3an2

2
(α+β)+

3an

2
(αa+βb+γa)+ReA(z)

]
·

·
[(

n3

8
+a3

)
Re α+

3an2

4
(α+ β)+

3an

2
(αa+ βb+ γa)+

3ab2

4
Re β−δ

]
.

(2.1)
If p ∈ H[1, n] and

Re [A(z)p2(z) +B(z)p(z) + α(zp′(z)− a)3 (2.2)

−3aβ

(
zp′(z)− b

2

)2

+ 3a2γ(zp′(z)) + δ] > 0

then

Re p(z) > 0.

Proof. We let ψ : C2 × U → C be defined by

ψ(p(z), zp′(z); z) = A(z)p2(z) +B(z)p(z) + α(zp′(z)− a)3 (2.3)

−3aβ

(
zp′(z)− b

2

)2

+ 3a2γ(zp′(z)) + δ].

From (2.2) we get

Re ψ(p(z), zp′(z); z) > 0, z ∈ U. (2.4)
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For σ, ρ ∈ R satisfying σ ≤ −n
2

(1 + ρ2), hence

−σ2 ≤ −n
2

4
(1 + ρ2)2, σ3 ≤ −n

3

8
(1 + ρ2)3

and z ∈ U , by using (2.1) we obtain

Re ψ(ρi, σ; z)

= Re [A(z)(ρi)2 +B(z)ρi+ α(σ − a)3 − 3aβ

(
σ − b

2

)2

+ 3a2γσ + δ]

= −ρ2Re A(z)− ρIm B(z) + (σ3 − a3)Re α− 3a(α+ β)σ2

+3a (αa+ βb+ γa)σ − 3ab2

4
Re β + δ

≤ −ρ2ReA(z)− ρIm B(z)−n
3

8
(1 + ρ2)3Re α−a3Re α− 3an2

4
(α+β)(1+ρ2)2

−3an

2
(αa+ βbγa) (1 + ρ2)− 3ab2

4
Re β + δ

= −n
3

8
ρ6Re α−

[
3n3

8
Re α+

3an2

4
(α+ β)

]
ρ4

−
[(

3n3

8
Re α+

3an2

2
(α+ β) +

3an

2
(αa+ βb+ γa) + Re A(z)

)
ρ2+

+ρIm B(z) +

(
n3

8
+ a3

)
Re α+

3an2

4
(α+ β)

+
3an

2
(αa+ βb+ γa) +

3ab2

4
Re β − δ

]
≤ 0.

By using Lemma 1.1 we have Re p(z) > 0. �

Remark 2.1. For a = 1 similar results were obtained in [1], for b = 0 the result were
obtained earlier by the author in [5] and for a = 1 and b = 0 we reobtain a result
from [2].

Taking β = γ = ᾱ in the Theorem 2.1, we have

Corollary 2.1. Let a, b ∈ R+, α ∈ C, Re α ≥ 0,

δ <

(
n3

8
+ a3 +

3an2

2
+

3an

2
(2a+ b) +

3ab2

4

)
· Re α

and n be a positive integer. Suppose that the functions A,B : U → C satisfy

(i) Re A(z) >

[
−3n3

8
− 3an2 − 3an

2
(2a+ b)

]
Re α;

(ii) Im 2B(z)≤4·
[(

3n3

8
+ 3an2 − 3an

2
(2a+ b)

)
· Re α+ Re A(z)

]
·

·
[(

n3

8
+ a3 +

3an2

2
+

3an

2
(2a+ b) +

3ab2

4

)
Re α−δ

]
.

(2.5)
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If p ∈ H[1, n] and

Re [A(z)p2(z) +B(z)p(z) + α(zp′(z)− a)3 (2.6)

−3aᾱ

(
zp′(z)− b

2

)2

+ 3a2ᾱ(zp′(z)) + δ] > 0

then
Re p(z) > 0.

Taking α+ β = αa+ βb+ γa = α+ γ = 1 in the Theorem 2.1, we obtain

Corollary 2.2. Let a, b ∈ R+, α ∈ C, Re α ≥ 0,

δ <

(
n3

8
+ a3

)
Re α+

3an2

4
+

3an

2
+

3ab2

4
(1− α)

and n be a positive integer. Suppose that the functions A,B : U → C satisfy

(i) Re A(z) > −3n3

8
Re α− 3an2

2
− 3an

2
;

(ii) Im 2B(z) ≤ 4 ·
[

3n3

8
Re α+

3an2

2
+

3an

2
+ Re A(z)

]
·

·
[(

n3

8
+ a3

)
Re α+

3an2

4
+

3an

2
+

3ab2

4
(1− α)−δ

]
.

(2.7)

If p ∈ H[1, n] and

Re [A(z)p2(z) +B(z)p(z) + α(zp′(z)− a)3 − 3a(1− α)

(
zp′(z)− b

2

)2

(2.8)

+3a2(1− α)(zp′(z)) + δ
]
> 0

then
Re p(z) > 0.

Taking α = 0 in the Theorem 2.1, we have

Corollary 2.3. Let a, b ∈ R+, β, γ > 0, δ <
3an2

4
β +

3an

2
(βb + aγ) +

3an2

4
and n

be a positive integer. Suppose that the functions A,B : U → C satisfy

(i) Re A(z) > −3an2

2
β − 3an

2
(βb+ aγ);

(ii) Im 2B(z) ≤ 4

(
3an2

2
β +

3an

2
(βb+ aγ) + Re A(z)

)
·

·
(

3an2

4
β +

3an

2
(βb+ aγ)− δ

)
.

(2.9)

If p ∈ H[1, n] and

Re [A(z)p2(z) +B(z)p(z)− 3aβ

(
zp′(z)− b

2

)2

+ 3a2γ(zp′(z)) + δ]>0 (2.10)
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then
Re p(z) > 0.

Taking β = γ = 0 in the Theorem 2.1, we obtain

Corollary 2.4. Let a, b ∈ R+, α > 0, δ <

(
n3

8
+ a3 +

3an2

4
+

3a2n

2

)
·α and n be a

positive integer. Suppose that the functions A,B : U → C satisfy

(i) Re A(z) > −
(

3n3

8
− 3an2

2
− 3a2n

2

)
· α;

(ii) Im 2B(z) ≤ 4

[(
3n3

8
+

3an2

2
+

3a2n

2

)
α+ Re A(z)

]
·

·
[(

n3

8
+ a3 +

3an2

4
+

3a2n

2

)
α− δ

]
.

(2.11)

If p ∈ H[1, n] and

Re [A(z)p2(z) +B(z)p(z) + α(zp′(z)− a)3 + δ] > 0 (2.12)

then
Re p(z) > 0.

Letting n = 1, a = 1, b = 1, α = 2 + i, δ = 15, A(z) = 1− z and B(z) = 1 + 2z in
Corollary 2.1, we have

Example 2.1. If p ∈ H[1, 1] and

Re [(1− z)p2(z)+(1 + 2z)p(z)+(2 + i)(zp′(z)− 1)3 (2.13)

−3(2− i)
(
zp′(z)− 1

2

)2

+ 3(2− i)(zp′(z)) + δ] > 0

then
Re p(z) > 0.
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[5] R. Şendruţiu, On a certain differential inequality, (to appear).

Roxana Şendruţiu
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||Lm(V )n − Lm(V )n+1|| ≤ const√
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as n→∞
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1. Introduction

An operator A is power-bounded if

sup
n≥0
||An|| <∞.

Denote by V the classical Volterra operator

(V f)(x) =

∫ x

0

f(s)ds, on Lp(0, 1), 1 ≤ p ≤ ∞

and by Lm(V ) the Laguerre polynomials generated by the Volterra operator

Lm(V ) =

m∑
k=0

(
m

k

)
(−1)k

V k

k!
, (m ≥ 1),

1The first author supported by the European Community Program ”Operator theory methods
for differential equations” (TODEQ)
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respectively.
In 1987, Allan [1, p. 15] recorded the observation made by Pedersen that I −V is

similar to (I + V )−1, namely

S−1(I − V )S = (I + V )−1

where (Sf)(t) = etf(t).
By Halmos [3, Problem 150] we know that ||(I + V )−1|| = 1 on L2(0, 1). Hence

I − V is a power-bounded on L2(0, 1). In 1945, Hille [4, Theorem 11] proved that

||(I − V )n||1 = O(n
1
4 ).

It was proved in [6, p. 770] that

||(I − V )n+1 − (I − V )n||p ≤ n−
1
2+|

1
4−

1
2p |

and this estimation is sharp.
By [9, Theorem 7] and [2, Theorem 9.1] we know that

lim
n→∞

||Lm(V )n − Lm(V )n+1|| = 0

for natural fixed m.
We shall find an upper estimate of the differences of consecutive powers of the

Laguerre polynomials on L2(0, 1).
In the proof of Theorem 2, we shall use the following interpolation result, which

seems to have an independent interest.

2. The results

Theorem 1. Let p(z) = (z− a1)(z− a2)...(z− an) be a polynomial with the positive
roots a1 < a2 < ... < an. Then there is a polynomial q(z), also with positive roots
only, such that

p(z) = (1− ω) + ωq(z)

for some 0 < ω < 1.
Proof. Observe that p(z) is real for all real z. By the Rolle theorem, the derivative

p
′
(z) has roots c1, c2, ... such that a1 < c1 < a2 < c2 < ... < am−1 < cm−1 < am.

Hence p(ck) 6= 0 for k = 1, 2, ...m− 1. Let

0 < ε < min
k∈1,2,...,m−1

(|p(ck)|, 1).

Then the new polynomial

q(z) =
p(z)− ε

1− ε
will have all the roots positive again, and with ω = 1 − ε ∈ (0, 1), we shall have
p(z) = ε+ (1− ε)q(z) = (1− ω) + ωq(z).
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Theorem 2. The following estimate holds for the Laguerre polynomials generated
by the Volterra operator

||Lm(V )n − Lm(V )n+1|| ≤ const√
n

on L2(0, 1) space for natural fixed m.

Proof. Recall that the zeros of the Laguerre polynomials Lm(·) are real, positive
and simple (see [5], p. 84). By Theorem 2, there exists a polynomial Qm(V ) such
that

Lm(V ) = (1− ω)I + ωQm(V )

for some 0 < ω < 1.
Now the the Nevanlinna theorem [7, Theorem 4.5.3] yields

||Lm(V )n − Lm(V )n+1|| ≤ const√
n

which gets the claim.
Question. What about the lower estimation of ||Lm(V )n−Lm(V )n+1|| on L2(0, 1)

space ?
Acknowledgment. We are grateful to Professors Yuri Lyubich and Jaroslav

Zemánek for useful discussions.
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1. Introduction

A harmonic center of trilateral was introduced by Wilczek K. in [6] and was used to
study distortion properties of quasihomographies of a Jordan curve, see [5], quasicon-
formal mapping on the unit disc, see [9]. Using the notion of a harmonic center was
introduce the harmonic reflection, see [7], a harmonic quadrilaterals, see [8] and some
extension operator, see [7], [4].

We will denote by G a Jordan domain on C, G ⊂ C and by Γ its boundary positve
oriented with respect to G, Γ = ∂G ⊂ C.

Let α will be any arc of Γ, α ⊂ Γ. By ω(z;α,Γ) or equivalent ω(z;α,G) we will
denote the harmonic measure of the arc α in a domain G at the point z ∈ G, shortly:
the harmonic measure of the arc α at the point z.

We recall some geometrical properties of the harmonic measure:

1. The harmonic measure is a probability measure on a curve Γ.

2. The harmonic measure is a conformal invariant, that means if F : G → G′ are
conformal mapping than:

ω(z;α,Γ) = ω(F (z);F (α), F (Γ))
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3. If G = U := {z ∈ C; Im z ≥ 0}, A,B ∈ R, AB are the segment on real line R
and ϕ is the oriented angle of view of the segment AB from the point z ∈ U
than

ω(z;AB,U) =
1

π
arg

z −A
z −B

=
1

π
ϕ (1)

4. A constatnt value line LU
(
AB, λ

)
=
{
z ∈ U : ω(z;AB,U) = λ

}
, λ ∈ [0, 1] is a

circle intersect the real line for an angle πλ and containing points A,B.

5. If G = D := {z ∈ C; |z| ≤ 1}, z1, z2 ∈ T = {z : |z| = 1}, ẑ1z2 are the segment
on unit circle T and ϕ is the angle of view of the segment ẑ1z2 from the point
z ∈ U and ϑ is the angle of view the arc ẑ1z2 from any point z∗ ∈ T than

ω(z; ẑ1z2,T) =
1

π
arg

z − z2

z − z1
:

1− z2

1− z1
=

1

π
(ϕ− ϑ) . (2)

6. A constatnt value line LD (ẑ1z2, λ) = {z ∈ D : ω(z; ẑ1z2,D) = λ} , λ ∈ [0, 1] is a
circle intersect the unit circle for an anglr πλ and containing points z1, z2.

7. If G = D∗ := {z ∈ C; |z| ≥ 1}, z1, z2 ∈ T∗ = {z : |z| = 1}, ẑ1z2 are the segment
on unit circle T and ϕ∗ is the angle of view of the segment ẑ2z1 from the point
z ∈ D∗ and ϑ is the angle of view the arc ẑ1z2 from any point z∗ ∈ T than

ω(z; ẑ2z1,T∗) =
1

π
(ϕ∗ + ϑ) mod 1. (3)

2. The harmonic center of a trilateral

A configuration Γ(z1, z2, z3) formed by Jordan curve Γ ⊂ C and triple points z1, z2, z3

ordered according to the oriented curve Γ are named by a trilateral.
By a conjugate trilateral we understand Γ∗(z1, z2, z3), where Γ∗ = ∂G∗ and G∗ =

C \G. The curve Γ∗ has oposit orientation to Γ.
We recall that (by Riemmnann Theorem) every two trilaterals are conformal equiv-

alent, that means any trilateral can be conformally mapped onto another trilateral.

Definition 2.1 [5] By a harmonic center of a trilateral Γ(z1, z2, z3) we colled a point
s ∈ G, s = sΓ(z1, z2, z4) such that the harmonic measure of the arcs ẑ1z2, ẑ2z3, ẑ3z1

are the same and equal to 1/3

ω(s; ẑ1z2,Γ) = ω(s; ẑ2z3,Γ) = ω(s; ẑ3z1,Γ)

Geometrically the harmonic center s of the trilateral is the point of intersection
of three constant value lines of the harmonic measure, respectivelly of the arcs ẑ1z2,
ẑ2z3, ẑ3z1 for value λ = 1/3.

Fact 2.1 The harmonic center of a trilateral is a conformal invariant, it means that
if F : G→ G′ is conformal mapping (on domain G ⊂ C) and D(z1, z2, z3) is arbitrary
trilateral asociatted with some domain D ⊂ G than

sD(z1, z2, z3) = sF (D)(F (z1), F (z2), F (z3)).
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Examples 2.1 We can construct (using (1) or (2)) the harmonic center of some
trilaterals associate with the real line or the unit circle.

1. Let A,B,C ∈ R be fixed and ordered points on the real line. Using (1) we can
calculate that

sR = (A,B,C) = −BCp1 + CAp3 +ABp2

Ap1 +Bp2 + Cp3
.

Note that the both angles of view of the sides AB and BC are equal to π/3.

2. Let T(p1, p2, p3) be a trilateral, where pk, k = 1, 2, 3 are cube roots of 1. Using
(2) we can deduced that sT(p1, p2, p3) = 0.

3. Let z1, z2, z3 ∈ T be fixed and ordered points on the unit circle. Using (2) and
Fact 2.1 we can calculate that

sT = (z1, z2, z3) = −z2z3p1 + z3z1p3 + z1z2p2

z1p1 + z2p2 + z3p3
. (4)

Fact 2.2 [7] The harmonic centers s = sT(z1, z2, z3) and s∗ = s∗T(z1, z2, z3) of arbi-
trary trilateral (associated with unit circle) and its conjugate trilateral are symmetric
points with respect to the unit circle T. Exactly: s∗ = 1/s.

3. The Apollonius point of a triangle

The Apollonius circles is the well known and old concept, but the Apollonius point
of triangle was introduced by H. Haruki and T.M. Rassian in [2] in 1996. H. Haruki
and T.M. Rassian used this new concept to some characterisation of Möbius trans-
formation from the standpoin of conformal mapping.

The notion of Apollnius point was the basis to constructed Apollonius quadruple
and another, see [2]. [3].

We start at the well known concept Apollonius circle.

Definition 3.1 (Apollonius circle) The locus of points P ∈ C such that the ratio
of its distanas from two fixed complex points A,B ∈ C is a constans value is called
the Apollonius circle.

For every Apollonius circle the points A and B are symetric with respect this circle.

We will be write A(A,B; k) for the Apollonius circle designated by the points A,
B and ratio k > 0.

Theorem 3.1 (Apollonius Theorem) [2], [1] The Apollonius circle is:

(i) the perpendicular bisector of the segment AB if k = 1,

(ii) the circle on diameter IE, where the points I, E lie on straight line AB and
|A− I| = k · |I −B| and |E −A| = k · |E −B| if k 6= 1.
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Definition 3.2 Let ∆ABC ⊂ C be an arbitrary triangle and L ∈ C. We denote
lengths of respectifly segments

a = |B − C|, b = |C −A|, c = |A−B|,

x = |L−A|, y = |L−B|, z = |L− C|.
If

ax = by = cz (5)

holds, then the point L is said to be an Apollonius point of a triangle ∆ABC.

It is easy to observe

Fact 3.1 Let ∆ABC be a triangle. If it is not equilateral triangle than exist exactly
two Apollonius pints L1, L2 of triangle ∆ABC. Points L1 and L2 are intersection of
three Apollonius circles A

(
A,B, ab

)
, A
(
B,C, bc

)
, A
(
C,A, ca

)
. If ∆ABC is equilateral

triangle then L1 is a centroid of this triangle and we can say L2 =∞.

Examples 3.1 [2] Let ∆ABC be a triangle on C and L1 and L2 be a Apollonius
points of the triangle ∆ABC

1. If ∆ABC is a equilateral triangle then L1 is a centroid of triangle ∆ABC.

2. If ∆ABC is an isoscales triangle, with equal angles π/6 at the ends of its base
BC than L1 is a midpoint of segment BC and the point L2 is the third point
of eqiulateral triangle ∆BCL2.

3. If ∆ABC is an isoscales triangle, with equal angles π/12 at the ends of its base
BC than L1 is a symetric point of A with respect a segment BC and L2 is the
third point of isoscales right-angled triangle ∆BCL2.

4. If ∆ABC is a triangle on the complex plane such that

α = ∠BAC = 90◦, β = ∠CBA = 60◦, γ = ∠ACB = 30◦

then the point L1 is a point inside ∆ABC such that

δA = ∠BL1C = 150◦, δB = ∠CL1A = 120◦, δC = ∠AL1B = 90◦

and the second Apollonius point L2 is the symmetric point of C with respect
to the side AB. Note that

ξA = ∠CL2B = 330◦, ξB = ∠AL2C = 0◦, ξC = ∠BL2A = 30◦,

In the paper [2] authors investigated some properties of mapping w = f(z) on a
domian R ⊂ C expressed by Apollonius points and Apollonius quadrilaterals. From
this we deduce

Theorem 3.2 Let w = f(z) be the Möbius transformation on C, two points L1, L2 ∈
C and any triangle ∆ABC ⊂ C. Denote

A′ = f(A), B′ = f(B), C ′ = f(C), L′1 = f(L1), L′2 = f(L2).

If L1 and L2 are the Apollonius points of triangle ∆ABC than L′1 and L′2 are the
Apollonius points of triangle ∆A′B′C ′.
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4. Main results

First we observe (using Examples 2.1 and Example 3.1) that the harmonic center and
the Applonius point can be the same point, for example.

1. If T1 = T(p1, p2, p3), where p1 = 1, p2 = 1
2 (−1 + i

√
3), p3 = 1

2 (−1 − i
√

3) are
cube roots of 1, we have s = 0 and the Apollonius point of an eqilateral triangle
∆ p1p2p3 is the point L1 = 0.

That means s = L1.

2. If T2 = T(1, z2, z3), where z2 = eiπ/3 = 1
2 (1 + i

√
3), z3 = e−iπ/3 = 1

2 (1 − i
√

3)
we can calculate from (2) that s = 1

2 and s∗ = 2.

The triangle ∆ z1z2z3 is a isosceles triangle with equal angles 30◦ then from
Example 3.1 we have L1 = 1

2 and L2 = 2.

That means s = L1 and s∗ = L2.

3. If T3 = T(1, z2, z3), where z2 = eiπ/6 = 1
2 (
√

3 + i), z3 = e−iπ/6 = 1
2 (
√

3− i) we

can calculate from (2) that s =
√

3− 1 and s∗ = 1+
√

3
2 .

The triangle ∆ z1z2z3 is a isosceles triangle with equal angles 30◦ then from

Example 3.1 we have L1 =
√

3− 1 and L2 = 1+
√

3
2 .

That means s = L1 and s∗ = L2.

We can generalize above observation and obtain

Theorem 4.1 Let Γ ⊂ C be any circle on C. For arbitrary three points z1, z2, z3 ∈ Γ
ordered according to the positive orientation to Γ we have

sΓ(z1, z2, z3) = L1, sΓ∗(z1, z2, z3) = L2 (6)

where L1 and L2 are the Apollonius points of the triangle ∆z1z2z3.

Proof. For a point z1, z2, z3 ∈ T we denote

a = |z2−z3|, b = |z3−z1|, c = |z1−z2|, x = |s−z1|, y = |s−z2|, z = |s−z3|.

We can calculate that the point s designated from (4) satisfies condition (5) for
Apollonius point of triangle ∆ z1z2z3.

By analogy we can check that the point s∗ = 1
s wchich is the harmonic center of

conjugate trilateral also satisfies condition (5).
The proof of Theorem 4.1 follows from the above observations, Theorem 3.2 and

Fact 2.1.

Fact 4.1 Let ∆ABC be arbitrary triangle on C and L be a point on C. Denote

α = ∠BAC, β = ∠CBA, γ = ∠ACB,
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and
δA = ∠BL1C, δB = ∠CL1A, δC = ∠AL1B,

and
ξA = ∠CL2B, ξB = ∠AL2C, ξC = ∠BL2A,

If

δA − α = δB − β = δC − γ =
π

3

and
ξA + α = ξB + β = ξC + γ =

π

3
mod π

holds than L1 and L2 are two Apollonius points of the triangle ∆ABC.

A ilustration of this fact is a poin 4 of Examples 3.1.
Proof. It is corollary of Theorem 4.1 and property (2) and (3) of the harmonic
measure.

Fact 4.2 Let A,B,C ∈ T, and L1 and L2 be two Apollonius points of triangle
∆ABC, then

L1 =
BCp1 + CAp3 +ABp2

Ap1 +Bp2 + Cp3
, L2 =

1

L1

.

The point L1 is the point of intersection of three circles intersect the unit circle
for angle π/3 and containing, respectivle, points z1, z2, or z2, z3, or z3, z1.

Proof. It is corollary of Theorem 4.1 and condition property (4) of the harmonic
center of the trilateral T(A,B,C)
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Abstract: Let I be an ideal of a commutative ring R. Denote by
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xy ∈ I. In this paper we study the diameter and the girth of ΓI(R), when
the prime ideals of R contained in S(I) are linearly ordered
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1. Introduction

The idea of associating a graph with the zero-divisors of a commutative ring was
introduced by Beck in 1988, where the author talked about the colorings of such
graphs. By the definition he gave, every element of the ring R was a vertex in the
graph, and two vertices x, y were adjacent if and only if xy = 0 ([3]). We adopt the
approach used by D. F. Anderson and P. S. Livingston ([1]) and consider only non-
zero zero-divisors as vertices of the graph. The zero-divisor graph of a commutative
ring has been studied extensively by several authors (see, for example, [3, 1, 6, 7, 8]).

Redmond [9] (see also [4, 7]) introduced the definition of the zero-divisor graph
with respect to an ideal. Let I be an ideal of a ring R. The zero-divisor graph of R
with respect to I is an undirected graph, denoted by ΓI(R), with vertices {x ∈ R\I :
xy ∈ I for some y ∈ R\I} where distinct vertices x and y are adjacent if and only if
xy ∈ I. Therefore, if I = 0 then ΓI(R) = Γ(R).

For the sake of completeness, we state some definitions and notations used through-
out. We will use R to denote a commutative ring with identity. We use Z(R) to denote
the set of zero-divisors of R; we use Z(R)∗ to denote the set of non-zero zero-divisors
of R. By the zero-divisor graph of R, denoted Γ(R), we mean the graph whose ver-
tices are the non-zero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, there is an
edge connecting x and y if and only if xy = 0. A graph is said to be connected if
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there exists a path between any two distinct vertices. For two distinct vertices a and
b in a graph G, the distance between a and b, denoted d(a, b), is the length of the
shortest path connecting a and b, if such a path exists; otherwise, d(a, b) = ∞. The
diameter of a connected graph is the supremum of the distances between vertices. We
will use the notation diam(G) to denote the diameter of the graph of G. A complete
graph is a graph in which every pair of distinct vertices is connected by an edge. The
girth of a graph G, denoted gr(G), is the length of a shortest cycle in G, provided G
contains a cycle; otherwise, gr(G) = ∞. It is shown in [9] that, ΓI(R) is connected
with diam(ΓI(R)) ≤ 3 and if ΓI(R) contains a cycle, then the gr(ΓI(R)) is 3, 4 or∞.

Let I be an ideal of R. I is called a radical ideal if I =
√
I, where

√
I is the set

of all elements of a of R with an ∈ I for some positive integer n. I is called quasi-
primary if

√
I is a prime ideal of R. Also we denote by a, the coset a+ I in R/I. We

say that R is a chained ring if the ideals of R are linearly ordered by inclusion. It is
easy to see that R is a chained ring if and only if eithet x|y or y|x for all x, y ∈ R.

We recall from [5], that an element a ∈ R is called prime to an ideal I of R if
ra ∈ I (where r ∈ R) implies that r ∈ I. Denote by S(I) the set of all elements of R
that are not prime to I. A proper ideal I of R is said to be primal if S(I) forms an
ideal; this ideal is always a prime ideal, called the adjoint ideal P of I. In this case
we also say that I is a P -primal ideal of R.

2. Results

Theorem 2.1 let I be an ideal of R, and let x, y be distinct elements of
√
I\I with

xy /∈ I. Then:

(1) The ideal (x, y) is not prime to I.

(2) If I is a primary ideal, then diam(ΓI(R)) ≤ 2.

Proof.

(1) Since x ∈
√
I, there exists a least positive integer n such that xny ∈ I. As

xy /∈ I, n ≥ 2. Let m be the least positive integer such that xn−1ym ∈ I. Since
xn−1y /∈ I, m ≥ 2. Then xn−1ym−1 ∈ (I :R (x, y))\I. This means that the
ideal (x, y) is not prime to I.

(2) If I is primary, then S(I) =
√
I. Choose two distinct vertices x, y in ΓI(R). If

xy ∈ I, then d(x, y) = 1. So assume that xy /∈ I. Then x, y ∈ S(I)\I =
√
I\I.

As in the proof of (1), we may find a path x − xn−1ym−1 − y from x to y in
ΓI(R). Hence d(x, y) = 2. Thus diam(ΓI(R)) ≤ 2.

2

Lemma 2.1 Let I be an ideal of R. If x ∈
√
I\I and y ∈ S(I)\I, then d(x, y) ≤ 2

in ΓI(R).
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Proof. We may assume that x, y are distinct with xy /∈ I. Since y is not prime
to I, and xy /∈ I, there is z ∈ S(I)\(I ∪ {x}) such that yz ∈ I. Since x ∈

√
I, there

exists a least positive integer n for which xnz ∈ I. Then x − xn−1z − y is a path of
length 2 from x to y in ΓI(R), that is d(x, y) ≤ 2. 2

Lemma 2.2 Let I be an ideal of R. Assume that x ∈ S(I)\
√
I and y ∈ S(I)\I are

such that x|zyn in R/I for some integer n ≥ 1 and z ∈ R\S(I). Then d(x, y) ≤ 2 in
ΓI(R).

Proof. We may assume that x and y are distinct with xy /∈ I. Since x ∈ S(I)\
√
I,

there exists a w ∈ S(I)\(I ∪ {x, y}) such that wx ∈ I. Since x|zyn and since z is
prime to I, we have ynw ∈ I. Let k be the least positive integer such that ykw ∈ I.
Then x−yk−1w−y is a path of length 2 from x to y in ΓI(R). Thus d(x, y) ≤ 2. 2

Theorem 2.2 Let I be an ideal of R. Then the prime ideals of R contained in S(I)
are linearly ordered if and only if for all x, y ∈ S(I), there is an integer n = n(x, y) ≥ 1
and an element z ∈ R\S(I) such that either x|zyn or y|zxn in R/I.

Proof. It is easy to see that Z(R/I) = S(I)/I. So the prime ideals of R contained
in S(I) are linearly ordered if and only if the prime ideals of R/I contained in Z(R/I)
are linearly ordered, if and only if the prime ideals of T (R/I) are linearly ordered, if
and only if there is an integer n = n(x, y) ≥ 1 such that either x|yn or y|xn in T (R/I)
(see [2, Theorem 1]). The assertion now easily follows. 2

Theorem 2.3 Let I be an ideal of R with S(I)2 * I such that the prime ideal of R
contained in S(I) are linearly ordered. Then diam(ΓI(R)) = 2.

Proof. If I is a radical ideal, then I is the intersection of all minimal prime ideals
containing I. But S(I) is the union of all prime ideals containing I. Consequently
as the prime ideals contained in S(I) are linearly ordered, I is a prime ideal. So
I =
√
I = S(I), and so S(I)2 ⊆ I, a contradiction. Therefore I is not a radical ideal.

Furthermore, ΓI(R) is not complete by hypothesis. Thus diam(ΓI(R)) > 1. As
S(I)2 * I, there exist distinct elements x, y ∈ ΓI(R) such that xy /∈ I. If x, y ∈

√
I,

then d(x, y) = 2 by Theorem 2.1. If x ∈
√
I and y ∈ S(I)\

√
I, then d(x, y) = 2 by

Lemma 2.1. So assume that x, y ∈ S(I)\
√
I. By Theorem 2.2, there exists an integer

n ≥ 1 and an element z ∈ R\S(I) such that either x|zyn or y|zxn in R/I. In any
case, d(x, y) = 2 by Lemma 2.2. Therefore diam(ΓI(R)) ≤ and so diam(ΓI(R)) = 2.
2

Let I be an ideal of R. Set

NI(R) = {x ∈ R|x2 ∈ I}

Clearly I ⊆ NI(R) ⊆
√
I.

Lemma 2.3 Let I be an ideal of R such that R/I is a chained ring. Assume that
x, y ∈ R. Then
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(1) If xy ∈ I, then either x ∈ NI(R) or y ∈ NI(R).

(2) If x, y ∈ NI(R), then xy ∈ I.

(3) If x, y ∈ S(I)\NI(R), then xy /∈ I.

(4) If x ∈ S(I)\I, then xz ∈ I for some z ∈ NI(R)\I.

(5) If x1, ..., xn ∈ S(I)\I, then there is a y ∈ NI(R)\I such that xiy ∈ I for every
1 ≤ i ≤ n.

(6) NI(R) is an ideal of R.

Proof.

(1) Since I is a chained ideal, we may assume that x|y in R/I. So there exist z ∈ R
and z ∈ I with y = xz + a. Then y2 = xyz + ay ∈ I shows that y ∈ NI(R).

(2) As in part (1), there exist z ∈ R and a ∈ I with y = xz + a. Now xy =
x2z + ax ∈ I.

(3) This is a direct consequence of part (1).

(4) If x ∈ NI(R), we can put y = x. So assume that x ∈ S(I)\NI(R). Since
x ∈ S(I), there exists y ∈ R\I with xy ∈ I. So y ∈ NI(R) by part (3).

(5) Since R/I is a divided ring, there is an integer 1 ≤ j ≤ n such that xj |xi for
all 1 ≤ i ≤ n. On the other hand, by part (4), there exists a y ∈ NI(R)\I with
xjyıI. So xiy ∈ I for all 1 ≤ i ≤ n.

(6) It follows from part (2) above.

2

Theorem 2.4 Let I be an ideal of R such that R/I is a chained ring. Then
diam(ΓI(R)) ≤ 2

Proof. There is nothing to prove if |S(I)\I| < 2. So assume that |S(I)\I| ≥ 2.
Pick two distinct vertices x, y ∈ S(I)\I. If x, y ∈ NI(R), then xy ∈ I by Lemma
2.3(2), and hence d(x, y) = 1. If x ∈ NI(R) and y /∈ NI(R), then yz ∈ I for some z ∈
NI(R)\I by Lemma 2.3(4). So, by Lemma 2.3(2), xz ∈ I. Hence d(x, y) ≤ 2. Finally
assume that x, y ∈ R\NI(R). Then, there exists a z ∈ NI(R)\I with xz, yz ∈ I by
Lemma 2.3(5). Therefore d(x, y) ≤ 2, and hence dam(ΓI(R)) ≤ 2. 2

Finally we give a result about the girth of the graph ΓI(R).

Theorem 2.5 Let I be a quasi-primary ideal of R with
√
I ( S(I) and |

√
I\I| ≥ 2.

Then gr(ΓI(R)) = 3 or ∞.
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Proof. Pick an element z ∈ S(I)\
√
I. It is easy to see that there exists w ∈

√
I\I

with zw ∈ I. If w2 /∈ I, and if m is the least positive integer such that wm ∈ I.
Then wm−1 6= w, and hence z−w−wm−1− z is a triangle in ΓI(R). So assume that
w2 ∈ I. Choose an element d ∈

√
I\{w}. If wd /∈ I, then z−w−wd− z is a triangle

in ΓI(R). Now assume that wd ∈ I. If zd ∈ I, then z − w − d − z is a triangle in
ΓI(R). So assume that zd /∈ I. If w = zd, then zd2 = wd ∈ I. Thus w− z2− d−w is
a triangle in ΓI(R). So we may assume that w and zd are distinct. As d ∈

√
I, there

exists a least positive integer such that zdn ∈ I. Then n > 1 since zd /∈ I. Assume
that n > 2. Clearly zdn−1 6= d. If w and zdn−1 are distinct, then we have a triangle
w − zdn−1 − d − w in ΓI(R). If w = zdn−1, then z2dn−1 = zw ∈ I. Moreover dn−1

and w are distinct since otherwise zdn−1 = zw ∈ I, which contradicts the minimality
of n. Hence w−z2−dn−1−w is a triangle in ΓI(R). Now assume that n = 2. Clearly
zd2 ∈ I. If zd 6= d, then w− zd−d−w is a triangle in ΓI(R). So assume that zd = d.
Hence d2 = zd2 ∈ I. Since zw ∈ I and zd /∈ I, we have w + d /∈ I. Thus w, d and
w + d are all distinct. Since w2, d2 and wd all belong to I, w − w + d − d − w is a
triangle in ΓI(R). Consequently gr(ΓI(R)) = 3 2
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