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Preface

Agnieszka Chlebowicz, Tomasz Zając

This book is dedicated to Professor Józef Banaś, an outstanding mathematician
and the creator of the Rzeszów school of nonlinear analysis,

on the occasion of his 75th birthday.

This multi-author monograph consists of six independent chapters and
presents selected results in functional analysis (Chapters 1–5) as well as
complex analysis (Chapter 6). Some of its authors, to a greater or lesser
extent, are or have been associated with Professor Józef Banaś. The text is
presented in a self-contained manner and provides references to enable the
interested reader to pursue further studies.
In the first chapter, ”Existence of Diametrically Complete Sets with

Empty Interior in Reflexive Banach Spaces”, M. Walczyk proves that in
every infinite-dimensional and reflexive Banach space there exists an equiv-
alent norm under which one can find a diametrically complete set with
empty interior.
In the next chapter, ”New Retraction Constant for the Class of Separable

Banach Spaces Containing an Isometric Copy of c0”, D. Kapitan shows the
interesting result relative to the constant of the lipschitzian retraction from
the closed unit ball onto its boundary in infinite-dimensional Banach space.
He proves that optimal retraction constant of the separable Banach space
containing an isometric copy of c0 does not exceed the value 4(1 +

√
2)2.

This fact complements a well-known and important theorem stating that in
every infinite-dimensional Banach space there exists a Lipschitz retraction
from the closed unit ball onto the unit sphere.



Agnieszka Chlebowicz, Tomasz Zając

M. Malec in the chapter ”Isometries Between Subspaces of Codimension
k of the Space C([1, ωk])” recalls the result from the paper by E. Casini,
E. Miglierina and Ł. Piasecki published in 2024. This result says that all ℓ1-
preduals X such that the ℓ1 standard basis has a finite amount of σ(ℓ1, X)-
cluster points are located among subspaces of the spaces C([1, ωk]) of codi-
mension k (C([1, ωk]) is the space of continuous functions on the ordinal
interval [1, ωk] equipped with the order topology).
In the chapter ”On a Certain Renorming of ℓ2”, B. Piątek examines

the renormings of the Hilbert space ℓ2 of square-summable sequences and
gives a positive answer to the question of whether a certain renorming of
the space ℓ2 has the fixed point property.
In the chapter ”Selected Geometric Properties of Interpolation Spaces”

J. Markowicz considers a general discrete and abstract method of interpola-
tion based on a k-functional to obtain an interpolation space. She examines
which among the selected properties of Banach spaces are preserved when
passing to an interpolation space.
Agnieszka Wiśniowska-Wajnryb in the last chapter ”Majorization of

Derivatives for Ma–Minda Type of Convex Functions” introduces the prob-
lem of majorization of derivatives and determines the radius of majorization
of derivatives for majorants from general class of Ma-Minda convex func-
tions.

The editors thank the authors of the chapters for their cooperation
throughout the entire editorial process. The editors also thank the reviewers
for their comments and suggestions, which have contributed to improving
the quality of the presented monograph. The editors would also like to thank
the staff of the Publishing House of Rzeszów University of Technology for
their help in the timely publication of this book. Finally, the editors ex-
tend their sincere thanks to our colleagues from the Department of Nonlin-
ear Analysis at Rzeszów University of Technology, Agnieszka Dubiel, Rafał
Nalepa, and Szymon Dudek, who have made a significant contribution to
the completion of this publishing project.
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Chapter 1

Existence of diametrically complete
sets with empty interior in reflexive

Banach spaces

Mariola Walczyk

1. Introduction

The definition of a diametrically complete set was introduced in 1911 by E.
Meissner ([37]). Observe that some infinite-dimensional Banach spaces are
known to contain diametrically complete sets with empty interior. In [38] J.
P. Moreno, P. L. Papini and R. R. Phelps gave an example of a diametrically
set with empty interior in c0 and an example of a subset of C([0, 1]) which is
diametrically complete and is contained in a hyperplane. In [35] E. Maluta
and P. L. Papini gave a sufficient condition for the existence of diametri-
cally complete sets with empty interior in infinite-dimensional and reflexive
Banach spaces. They also exhibited the example of such a set in the Banach
space E√2. In 2017, Maluta extended these results by presenting a reflex-
ive LUR Banach space which contains a diametrically complete set with
empty interior ([34]). Recent studies on diametrically complete sets have
concentrated on three principal research directions:
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� characterizations of diametrically complete sets in classical Banach
spaces and characterizations of families of convex sets associated with
them,

� the determination of the smallest, with respect to set inclusion, dia-
metrically complete set containing a given set,

� the investigation of the existence of diametrically complete sets with
empty interior.

In this chapter we consider the third topic. This is a survey of results of
establishing the existence, under a suitable equivalent renorming, of diamet-
rically complete sets with empty interior in infinite-dimensional, reflexive
Banach spaces. Since in Section 5 we introduce a new norm ∥ · ∥α,β,p,F we
get a few new results and proofs.
In Section 2 we introduce notations and recall definitions and results

from the geometry of Banach spaces, which will be applied later in the
chapter.
Section 3 is devoted to recalling the definition and basic properties of di-

ametrically complete sets.
The theorem proved in Section 4, concerning the existence of an equiv-

alent norm with the Opial and Kadec–Klee properties in every separable
Banach space, will be one of the main tools in solving our central problem.
In Section 5, we construct the new Day-type norm ∥ ·∥α,β,p,F , which will

be used to define the norm in the proof of our fundamental Theorem 47.
In Section 6, we prove the existence of a diametrically complete set with

empty interior in suitably renormed (by the Day-type norm) infinite-dimen-
sional, separable and reflexive Banach spaces (Theorem 48).
In Section 7, we demonstrate how our problem, initially posed in infinite-

dimensional reflexive Banach spaces, can be reduced, using results of A. R.
Lovaglia ([33]) and S. L. Troyanski ([47]), to the case of infinite-dimensional,
separable, reflexive Banach spaces. In this way, we completely resolve the
problem of the existence of diametrically complete sets with empty interior
in reflexive Banach spaces.

2. Basic notions and facts

This section is devoted to collect notations, definitions and some facts from
the geometry of Banach spaces.
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In our chapter, we will consider Banach spaces over the field of real
numbers R. If necessary, instead of the norm ∥ · ∥ in the Banach space X,
we will write ∥ · ∥X .
Throughout the chapter, we assume that Γ is an infinite set, and by c0(Γ)

we denote the Banach space consisting of functions u : Γ→ R, u = {uγ}γ∈Γ
such that for every ϵ > 0, the set {γ ∈ Γ : |uγ | ­ ϵ} is finite. In the space
c0(Γ), the classical supremum norm is denoted by∥ · ∥c0(Γ), i.e.

∥u∥c0(Γ) := sup
γ∈Γ
|uγ |

for u = {uγ}γ∈Γ ∈ c0(Γ). When Γ = N, we usually write c0 instead of c0(N).
The support of a function u, i.e. the set {γ ∈ Γ : uγ ̸= 0} will be denoted
by N(u).
If we fix any number 1 ¬ p < +∞, then the space consisting of all

functions u ∈ c0(Γ) such that
∑
γ∈N(u) |uγ |p <∞ is denoted by the symbol

ℓp(Γ). The norm in this space is given by the formula

∥u∥lp :=
 ∑
γ∈N(u)

|uγ |p
 1p

for u = {uγ}γ∈Γ ∈ ℓp(Γ)\{0} and ∥0∥lp = 0. The space ℓp(N) is traditionally
denoted by ℓp. In further considerations, for 1 < p <∞, when unnecessary
to specify, we will write ∥ · ∥p instead of the symbol ∥ · ∥ℓp .
We denote by C([0, 1],R) the space of all functions f : [0, 1] → R that

are continuous on the interval [0, 1]. In the space C([0, 1],R) we have the
classical norm

∥f∥C := max{|f(t)| : t ∈ [0, 1]}
for f ∈ C([0, 1],R).
In the chapter ℓ∞ := {u = (un)∞n=1 : supn∈N |un| < ∞} with the stan-

dard norm ∥u∥∞ := supn∈N |un| for every u = (un)∞n=1 ∈ ℓ∞.

We now recall some definitions and theorems from the geometry of Ba-
nach spaces, which will be used in this chapter.

Definition 1 ([48]). For a Banach space (X, ∥ · ∥X) and a fixed element

9
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z ∈ X with ∥z∥X = 1, the function δz : [0, 2]→ [0, 2] defined by

δz(ϵ) := inf{1−
1
2
∥x+ y∥X : ∥x∥X ¬ 1, ∥y∥X ¬ 1, x− y = ϵz}

is called the modulus of convexity of (X, ∥ · ∥X) in the direction z.
If δz(ϵ) > 0 for all ϵ > 0, then (X, ∥ · ∥X) is said to be uniformly convex

in the direction z.
If δz(ϵ) > 0 for all ϵ > 0 and all z ∈ X with ∥z∥ = 1, then (X, ∥ · ∥X) is

said to be uniformly convex in every direction.

In [48] V. Zizler proved the following results.

Proposition 2. Suppose that (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) are Banach spaces,
T is a linear continuous one-to-one mapping of X into Y . Assume that
(Y, ∥ · ∥Y ) is uniformly convex in every direction Tz/∥Tz∥Y , z ∈ X and
∥z∥X = 1. Then X has an equivalent norm ||| · |||X given by

|||x|||X =
√
∥x∥2X + ∥Tx∥2Y

for x ∈ X, which is uniformly convex in every direction.

Corollary 3. Assume that a Banach space (X, ∥ · ∥X) has a bounded se-
quence of functionals {f∗i }i in (X∗, ∥ · ∥X∗) which separates the points in
(X, ∥ · ∥X) and that an equivalent norm in X is given by

|||x|||X =
√√√√∥x∥2X + ∞∑

i=1

(
f∗i (x)
2i

)

for x ∈ X. Then (X, ||| · |||X) is uniformly convex in every direction.

We also introduce the notion of locally uniformly convex space, that will
be crucial in our later considerations.

Definition 4 ( [33]). We say that a Banach space (X, ∥ · ∥X) is locally
uniformly convex (LUR) if for each x ∈ X, every sequence {xn}n with
limn ∥xn∥X = ∥x∥X and limn ∥x + xn∥X = 2∥x∥X tends strongly to x. In
this case we also say that the norm ∥ · ∥X is LUR.

A. R. Lovaglia proved the following theorem, which plays an important
role in the proof of the main result of this chapter, namely Theorem 51.

10
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Theorem 5 ([33]). Let the Banach spaces (X1, ∥ · ∥1) and (X2, ∥ · ∥2) be
locally uniformly convex (LUR). If on X := X1×X2 the norm ∥·∥ is defined
by

∥x∥ = ∥(x1, x2)∥ :=
√
∥x1∥21 + ∥x2∥22

for x = (x1, x2) ∈ X, then (X, ∥ · ∥) is also LUR.
In the proof of Theorem 51, we will also apply Troyansky’s theorem,

which we present in a weaker form that is nevertheless sufficient for our
purposes.

Theorem 6 ([47]). Every reflexive Banach space admits an equivalent lo-
cally uniformly convex norm.

The following properties of Banach spaces are related to weakly conver-
gent sequences.

Definition 7 ([42], [21]). A Banach space (X, ∥ ·∥X) has the Opial property
if for each weakly null sequence {xn}n and each point x ̸= 0 in X, we have

lim sup
n→∞

∥xn∥X < lim sup
n→∞

∥xn − x∥X .

A Banach space (X, ∥ · ∥X) is said to have the non-strict Opial property
if for each weakly null sequence {xn}n and each point x ∈ X, we have

lim sup
n→∞

∥xn∥X ¬ lim sup
n→∞

∥xn − x∥X .

In 1982 D. van Dulst proved the following result.

Theorem 8 ([18]). Every infinite-dimensional and separable Banach space
(X, ∥ · ∥X) admits an equivalent norm ∥ · ∥X,1 so that (X, ∥ · ∥X,1) has the
Opial property.

We will also recall the theorem used in the proof of D. van Dulst’s
theorem, which will be one of the fundamental tools for the construction of
the norm in section 4 (Schauder basis – see Definition 17).

Theorem 9 ([5]). Let (X, ∥ · ∥X) be a Banach space with a Schauder basis
{ei}i and let P = {Pn}n­0 be the sequence of the natural projections asso-
ciated with this basis, i.e., P0 = 0 and Pnx = Pn(

∑∞
i=1 a

iei) =
∑n
i=1 a

iei for
each x =

∑∞
i=1 a

iei ∈ X. Then the norm ∥ · ∥P defined on X by

∥x∥P = sup
k=0,1,...

∥x− Pkx∥X

11
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for each x ∈ X is equivalent to the norm ∥ · ∥X and the Banach space
(X, ∥ · ∥P) has the non-strict Opial property.
We will also need a norm having the Kadec-Klee property. This property

is also related to the behavior of weakly convergent sequences.

Definition 10 ( [30], [31]). Let (X, ∥ · ∥X) be a Banach space. We say
that (X, ∥ · ∥X) has the Kadec-Klee property with respect to the weak
topology (the Kadec-Klee property for short) if each sequence {xn}n with
limn ∥xn∥X = 1, which converges weakly to a point x with ∥x∥X = 1, tends
strongly to x.

The theorem stated below shows the relationship between local uniform
convexity and the Kadec-Klee property.

Theorem 11 ([16]). Let (X, ∥ · ∥X) be a Banach space. If (X, ∥ · ∥X) is
locally uniformly convex, then (X, ∥ · ∥X) has the Kadec-Klee property with
respect to the weak topology.

In this chapter, we will study diametrically complete sets (definition of
such sets will be given in section 3) that have empty interior. To formulate
one of the key properties of a diametrically complete set with empty interior,
we will need the notion of a diametrical set and normal structure ([4], [21],
[35]).

Definition 12 ( [4]). Let (X, ∥ · ∥) be a Banach space. For a nonempty,
bounded and convex set C ⊂ X, the number

r∥·∥(C,C) := inf{sup{∥x− x′∥ : x′ ∈ C} : x ∈ C}

is called the Chebyshev self-radius of C.

Definition 13 ([4]). Let (X, ∥·∥) be a Banach space and let C be a nonempty,
bounded and convex subset of X. We say that the set C is diametral if
r∥·∥(C,C) = diam∥·∥(C).

Definition 14. A Banach space (X, ∥ · ∥X) is said to have normal structure
if it does not contain any diametral set, that is, if r∥·∥X (C,C) < diam∥·∥X (C)
for each nonempty, non-singleton, bounded and convex set C ⊂ X.
In [4] M. S. Brodskii and D. P. Mil’man not only introduced the notion

of normal structure but they also characterized it in the terms of diametral
sequences.

12
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Definition 15 ([4]). Let (X, ∥ · ∥) be a Banach space. A bounded and not
eventually constant sequence {xn} in (X, ∥ · ∥) is said to be diametral if

lim
n
dist∥·∥(xn+1, conv{x1, ..., xn}) = diam∥·∥{x1, x2, ...}.

Theorem 16 ([4]). A bounded and convex C of a Banach space (X, ∥ · ∥)
has normal structure if and only if it does not contain a diametral sequence.

We also recall the notion of a Schauder basis (see [32] and [44]).

Definition 17. Let (X, ∥ · ∥X) be a Banach space. A sequence {ei}i in X
is called a Schauder basis of X if for each x ∈ X, there exists a unique
sequence of scalars {xi}i such that x =

∑∞
i=1 x

iei. A basis {ei}i is called
normalized if ∥ei∥ = 1 for all i.

Definition 18. Assume that (X, ∥ · ∥) is a Banach space with a Schauder
basis {ei}i. The functionals e∗j defined as follows

e∗j (
∞∑
i=1

xiei) := xj for every j ∈ N

are called biorthogonal functionals associated with the basis {ei}i.

Remark 19. Throughout this chapter we assume that for each Schauder
basis {ei}i we consider, there exist constants 0 < m̃ ¬ M̃ < ∞ such that
m̃ ¬ ∥ei∥X ¬ M̃ for each i ∈ N. It then follows that for the biorthogonal
functionals {e∗i }i associated with the Schauder basis {ei}i, there also exist
constants 0 < m̃1 ¬ M̃1 <∞ such that m̃1 ¬ ∥e∗i ∥X∗ ¬ M̃1 for each i ∈ N.
In addition, we have limi e∗i (x) = 0 for each x ∈ X.

Theorem 20 ([25]). Assume that {ei}i is a Schauder basis in the Banach
space (X, ∥ · ∥X) with coefficients e∗i (x) = ai being linear functionals. Then
we have

(a) The functionals e∗i , i = 1, 2, . . . are continuous on X,

(b) supn ∥Pn∥XX <∞, where Pnx =
∑n
i=1 e

∗
i (x)xi for x =

∑∞
i=1 a

ixi∈X,
n = 1, 2, ... and ∥ · ∥XX is the operator norm associated with the norm
∥ · ∥X ,

13
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(c) The norm ∥ · ∥0, defined by the formula

∥x∥0 := sup
n
∥Pnx∥XX

for x ∈ X, is equivalent to the norm ∥ · ∥.

At this point we recall three important theorems which play an essential
role in our considerations in Sections 5 and 6.

Theorem 21 ([44]). The Banach space (C([0, 1],R), ∥ · ∥C) has a Schauder
basis.

The second theorem is due to W. B. Johnson and H. P. Rosenthal.

Theorem 22 ([27]). Every infinite-dimensional Banach space (X, ∥ · ∥X)
has an infinite-dimensional quotient space (X/Y, ∥ · ∥X/Y ) with a Schauder
basis.

The third theorem exhibits connections between a Schauder basis in
a Banach space and a Schauder basis in a quotient space.

Theorem 23 ([44]). Let (X, ∥ · ∥X) be a Banach space with a Schauder
basis {ei}i. Let {in}n be a finite or infinite increasing sequence of natural
numbers and let {jm}m be the infinite and increasing sequence of natural
numbers complementary to {in}n in N. If Y is the closed linear span of the
sequence {ein}n in X and ι is the canonical mapping of X onto the quotient
space X/Y with the canonical norm ∥ · ∥X/Y , then {ι(ejm)}m is a Schauder
basis in the Banach space (X/Y, ∥ · ∥X/Y ).

In the proof of Theorem 51, we will also use of the following results.

Theorem 24 ([2]). Let Y be a linear, closed, and separable subspace of a re-
flexive Banach space (X, ∥·∥). Then there exists a linear, closed, and separa-
ble subspace Z of X containing Y , as well as a linear and bounded projection
P from X onto Z with the operator norm ∥P∥XZ = 1.

Corollary 25 ([2]). Let (X, ∥ · ∥) be a non-separable and reflexive Banach
space. Then there exists an infinite-dimensional, linear, closed, and separable
subspace Z of X, as well as a linear projection P from X onto Z with
the operator norm ∥P∥XZ = 1.

14
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3. Diametrically complete sets

In this section, we recall the definition of a diametrically complete set ([37]).
This definition is closely related to the notion of the diameter of a set. We
will provide the fundamental relationship between a diametrically complete
set and a diametral set.

Definition 26 ( [37]). Let (X, ∥ · ∥X) be a Banach space and let C be
a non-singleton and bounded subset of X. We say that C is a diametrically
complete set in X if

diam∥·∥X (C ∪ {x}) > diam∥·∥X (C)

for each x ∈ X \ C.

In the case of finite-dimensional Banach spaces (X, ∥ · ∥), every diamet-
rically complete set C ⊂ X has nonempty interior. In the case of infinite-
dimensional spaces, this statement is not true. There exist diametrically
complete sets with empty interior in infinite-dimensional spaces. A simple
example of such a set in c0 was given by J. P. Moreno, P. L. Papini, and
R. R. Phelps in [38].

Example 27. Consider the set C ⊂ c0 defined in the following way:

C = {x = {xi}i∈N ∈ c0 : 0 ¬ xi ¬ 1}.

We will show that the set C has empty interior in (c0, ∥ · ∥∞). Take any
x = {xi}i ∈ C and define

yn = {yin} = x−
(
xn + 1n

)
en

for any n ∈ N, where en are the standard basis vectors of the space c0. Then

∥yn − x∥∞ =
∣∣xn + 1n ∣∣ > 0,

but on the other hand we have ynn = − 1n , so yn /∈ C, which means that
x is not an interior point of C. Observe that the set C is diametrically
complete. Indeed, if y = {yi} /∈ C, then there exists i0 ∈ N such that
yi0 ∈ (−∞, 0) ∪ (1,+∞). Taking x0 = {x0i }, where x0i = 0 for i ̸= i0 and

15
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x0i0 = 1 (respectively), we obtain

diam∥·∥c0 (C ∪ {y}) > 1 = diam∥·∥c0 C.

The following theorem, which is due to J. P. Moreno, P. L. Papini and
R. R. Phelps, exhibits a connection between the diametral property of a set
and the emptiness of the interior of a diametrically complete set.

Theorem 28 ([38]). Let (X, ∥·∥X) be an infinite-dimensional Banach space
and let C ⊂ X be diametrically complete. If the interior of C is empty, then
C is diametral.

It was observed by E. Maluta and P. L. Papini that the converse impli-
cation is not true. They presented the following example of a diametral set
with empty interior that is not diametrically complete ([35])

Example 29. Let X = E√2, E
√
2 = (ℓ

2, | · |√2), where |x|√2 = max{∥x∥2,√
2∥x∥∞} for x ∈ ℓ2. Consider the set C = conv{e1, e2}, where {ei}i
denotes the standard basis of ℓ2. Then the set C is diametral in E√2
and diam|·|√2C =

√
2, but it is not diametrically complete, because for

y = ( 1√
2
, 1√
2
, 0, . . .) /∈ C we have diam|·|√2(C∪{y}) =

√
2. Clearly, intC = ∅.

Thus, the existence of a diametral set with empty interior in an infinite-
dimensional Banach space is a necessary condition for the existence of a dia-
metrically complete set with empty interior, though not a sufficient one. To
establish sufficiency, we use the following result of E. Maluta and P. L. Pa-
pini.

Theorem 30 ([35]). Each infinite-dimensional and reflexive Banach space
(X, ∥·∥X) which has the non-strict Opial property and lacks normal structure
contains diametrically complete sets the interior of which is empty.

Remark 31. A Banach space satisfying the thesis of the above theorem
cannot be uniformly convex, uniformly convex in every direction, or reflex-
ive with the Opial property, since each of these properties entails normal
structure. Nevertheless, such a space can be locally uniformly convex ([35]).

4. Construction of a norm having both the Kadec-Klee and
the Opial properties

In this section we will prove the theorem about the existence of an equiv-
alent norm with the Opial and the Kadec-Klee properties in every infinite-
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dimensional, separable Banach space. This theorem will be one of the main
tools for solving the problem of the existence a diametrically complete set
with empty interior in reflexive spaces.
First we recall the notion of universality.

Definition 32 ([26]). A Banach space (Y, ∥ · ∥Y ) is said to be universal
for the class of separable Banach spaces if every separable Banach space
(X, ∥ · ∥X) is isometrically isomorphic to a subspace Y1 of Y, that is, there
exists a linear and norm-preserving isomorphism T :X→Y1 with T (X)=Y1.

There are two important examples of universal Banach spaces for the
class of separable Banach spaces ([26]).

Theorem 33. The space C([0, 1],R) furnished with the standard max-norm
∥ · ∥C is universal for the class of separable Banach spaces.

Theorem 34. The Banach space ℓ∞ of all bounded real sequences equipped
with the standard sup-norm ∥ · ∥∞ is universal for the class of separable
Banach spaces.

Remark 35. If (X, ∥·∥X) and (Y, ∥·∥Y ) are Banach spaces and T : X → Y
is a linear isometric embedding of X into Y , then we identify T (X) with X
and write X ⊂ Y .

The following theorem, due to M. I. Kadec and V. L. Klee, turns out to
be crucial in our subsequent considerations.

Theorem 36 ([30], [31]). Let (Y, ∥ · ∥Y ) be an infinite-dimensional Banach
space, Y ∗ its dual space with the standard norm ∥·∥Y ∗, and let X be a closed
and separable subspace of (Y ∗, ∥ · ∥Y ∗). Then there exist an equivalent norm
∥ · ∥Y,1 on Y and a norm ∥ · ∥Y ∗,1 on Y ∗ induced by ∥ · ∥Y,1 such that
if {yi}i is any sequence in Y ∗ which converges weakly* to ỹ ∈ X and if
limi ∥yi∥Y ∗,1 = ∥ỹ∥Y ∗,1, then limi ∥yi − ỹ∥Y ∗,1 = limi ∥yi − ỹ∥Y ∗ = 0.

The next two theorems will demonstrate the existence of an equiva-
lent norm having both the Kadec-Klee property and the Opial property in
infinite-dimensional and separable Banach spaces. The Kadec-Klee theorem
(Theorem 36), the universal spaces C([0, 1],R), ℓ∞, and the method pre-
sented in [18] in the proof of D. van Dulst’s Theorem will be the fundamental
tools in constructing the new norm. Our theorems are even a bit stronger
than we need since we show that the infinite-dimensional and separable Ba-
nach spaces with suitable chosen equivalent norms are also uniformly convex
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in every direction. These theorems were proved in [9], but for convenience
of the reader we also recall their proofs.

Theorem 37. The Banach space C([0, 1],R) endowed with the standard
max-norm ∥·∥C has an equivalent norm ∥·∥C,1 such that (C([0, 1],R), ∥·∥C,1)
has both the Kadec-Klee and the Opial properties and is uniformly convex
in every direction.

Proof. For the Banach space (C([0, 1],R), ∥ · ∥C) we cannot directly apply
Theorem 36 since there does not exist a predual space for it. Therefore, we
use the space ℓ∞ (in ℓ∞ we have the standard norm ∥ · ∥∞), which has the
predual space and is universal for the class of separable Banach spaces.
Consider Y = ℓ1 and ℓ∞ = (ℓ1)∗ = Y ∗ with the standard norms. By

the universality of (ℓ∞, ∥ · ∥∞) for the class of separable Banach spaces,
we have X = C([0, 1],R) ⊂ ℓ∞ (see the notation introduced in Remark
35). By Theorem 36, applied to Y = ℓ1 and Y ∗ = ℓ∞, there exists an
equivalent norm ∥·∥∞,1 on ℓ∞ such that if {ym}m is any sequence in ℓ∞ that
converges weakly* to ỹ ∈ C([0, 1],R), and if limm ∥ym∥∞,1 = ∥ỹ∥∞,1, then
limm ∥ym− ỹ∥∞,1 = limm ∥ym− ỹ∥∞ = 0. Hence in C([0, 1],R) we obtain the
Kadec-Klee property of the norm ∥ ·∥∞,1 with respect to the weak topology.
It is obvious that in C([0, 1],R) the norm ∥ · ∥∞,1 is equivalent to the norm
∥ · ∥C .
Now let {gi}i be any Schauder basis in (C([0, 1],R), ∥·∥C) with ∥gi∥C = 1

for i = 1, 2, ... (see Theorem 21) and let {g∗i }i be the sequence of biorthog-
onal functionals associated with this basis. We know that the sequence
{g∗i }i is bounded (see Remark 19). Let {Pn}∞n=0 be the sequence of pro-
jections in C([0, 1],R), which are defined in the following way: P0 := 0,
Pnh :=

∑n
i=1 g

∗
i (h)gi for n = 1, 2, ... and h ∈ C([0, 1],R). The sequence

{∥Pn∥CC}∞n=0 of the operator norms of these projections with respect to the
norm ∥ · ∥C in C([0, 1],R) is also bounded (see Theorem 20). At this point
we introduce a new norm on C([0, 1],R) as follows:

∥h∥C,1 :=
√
∥h∥2P,∞,1 + ∥h∥22̃,

where
∥h∥P,∞,1 := sup

n=0,1,2,...
∥h− Pnh∥∞,1

18



Mariola Walczyk

and

∥h∥2̃ :=
√√√√ ∞∑
i=1

(
g∗i (h)
2i

)2
for h ∈ C([0, 1],R). Then we have

� The norm ∥ · ∥C,1 is equivalent to the norm ∥ · ∥∞,1 in C([0, 1],R).
Indeed, consider h ∈ C([0, 1],R). Since

∥h∥P,∞,1 = sup
n=0,1,2,...

∥h− Pnh∥∞,1 ­ ∥h∥∞,1

so we have ∥h∥C,1 ­ ∥h∥∞,1 for h ∈ C([0, 1],R). Moreover, there exist
constants K̃,M̃>0 such that ∥h∥P,∞,1¬K̃∥h∥∞,1 and ∥h∥2̃¬M̃∥h∥∞,1.
Hence, we obtain

∥h∥C,1 ¬
√
(K̃2 + M̃2)∥h∥2∞,1 ¬

√
(K̃ + M̃)2∥h∥2∞,1 = (K̃+M̃)∥h∥∞,1

for h ∈ C([0, 1],R).
Thus, the inequalities

∥h∥∞,1 ¬ ∥h∥C,1 ¬ (K̃ + M̃)∥h∥∞,1

hold for every h ∈ C([0, 1],R). It follows immediately that the norm
∥ · ∥C,1 is equivalent to the maximum norm ∥ · ∥ on C([0, 1],R), since
the norm ∥·∥C,1 is equivalent to the norm ∥·∥∞,1, and the norm ∥·∥∞,1
is equivalent to the norm ∥ · ∥C .

� The Banach space (C([0, 1],R), ∥ · ∥C,1) is uniformly convex in every
direction by Corollary 3.

� The Banach space (C([0, 1],R), ∥ · ∥C,1) has the Opial property.
For each weakly null sequence {hm}m and h ∈ C([0, 1],R)\{0} we get

lim
m

∞∑
i=1

(
g∗i (hm)
2i

)2
= 0

and

lim
m

∞∑
i=1

(
g∗i (hm − h)
2i

)2
=
∞∑
i=1

(
g∗i (h)
2i

)2
.
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Therefore applying the non-strict Opial property of the norm ∥·∥P,∞,1
(see Theorem 9) we obtain

lim sup
m
∥hm − h∥C,1 = lim sup

m

√
∥hm − h∥2P,∞,1 + ∥hm − h∥22̃

= lim sup
m

√√√√∥hm − h∥2P,∞,1 + ∞∑
i=1

(
g∗i (hm − h)
2i

)2

= lim sup
m

√√√√∥hm − h∥2P,∞,1 + ∞∑
i=1

(
g∗i (h)
2i

)2
> lim sup

m
∥hm − h∥P,∞,1

­ lim sup
m
∥hm∥P,∞,1 = lim sup

m

√√√√∥hm∥2P,∞,1 + ∞∑
i=1

(
g∗i (hm)
2i

)2
= lim sup

m
∥hm∥C,1.

We will now show that the Banach space (C([0, 1],R), ∥ · ∥C,1) has the
Kadec-Klee property. Assume that a sequence {h̃m}m ⊂ C([0, 1],R)
converges weakly to h̃ ∈ C([0, 1],R) and limm ∥h̃m∥C,1 = ∥h̃∥C,1 = 1.
Then

∥h̃∥P,∞,1 > 0,
∥h̃∥2̃ > 0

and
0 < lim

m
∥h̃m∥2̃ = ∥h̃∥2̃ = β < 1.

Therefore, the limit limm ∥h̃m∥P,∞,1 and we have

0 < lim
m
∥h̃m∥P,∞,1 = ∥h̃∥P,∞,1 =

√
1− β2 = γ < 1.

Since limn Pnh̃ = h̃, we get

γ = ∥h̃∥P,∞,1 = ∥h̃− Pn̄h̃∥∞,1

for some 0 ¬ n̄ <∞. Observe now that

lim
m
Pn̄h̃m = Pn̄h̃ (1)
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in the norm ∥ · ∥C (so also in the norms ∥ · ∥∞,1 and ∥ · ∥C,1) and this
implies that the sequence {h̃m − Pn̄h̃m}m tends weakly in C([0, 1],R)
to h̃− Pn̄h̃. Therefore

γ = ∥h̃∥P,∞,1 = ∥h̃− Pn̄h̃∥∞,1 ¬ lim inf
m
∥h̃m − Pn̄h̃m∥∞,1

¬ lim sup
m
∥h̃m − Pn̄h̃m∥∞,1 ¬ lim

m
∥h̃m∥P,∞,1 = γ

and this means that

lim
m
∥h̃m − Pn̄h̃m∥∞,1 = ∥h̃− Pn̄h̃∥∞,1 = γ.

Using the Kadec-Klee property of the norm ∥ · ∥∞,1 in C([0, 1],R), we
get

lim
m
(h̃m − Pn̄h̃m) = h̃− Pn̄h̃

in (C([0, 1],R), ∥ · ∥∞,1). Since the norms ∥ · ∥∞,1 and ∥ · ∥C,1 are
equivalent we also have the same convergence

lim
m
(h̃m − Pn̄h̃m) = h̃− Pn̄h̃

in the norm ∥ · ∥C,1. But we have the convergence limm Pn̄h̃m = Pn̄h̃
in the norm ∥ · ∥C,1 (equality (1)) and hence we obtain

h̃ = lim
m
(h̃m − Pn̄h̃m) + Pn̄h̃ = lim

m
(h̃m − Pn̄h̃m) + lim

m
Pn̄h̃m = lim

m
h̃m

in the norm ∥ · ∥C,1, as required.

Remark 38. Since at a pinch we can multiply the norm ∥·∥C,1 by a suitably
chosen constant greater than 1 we assume that we have

∥ · ∥C ¬ ∥ · ∥C,1 ¬ LC,1∥ · ∥C

in C([0, 1],R).

Remark 39. Note that Theorem 37 is also true if we replace the Banach
space (C([0, 1],R), ∥ · ∥C) by any Banach space (X, ∥ · ∥X) with a Schauder
basis ([5]).
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Basing on Theorem 37 and universality of the space (C([0, 1],R), ∥ · ∥C)
for the class of separable Banach spaces, we obtain the following theorem.

Theorem 40. Every infinite-dimensional,separable Banach space (X, ∥·∥X)
admits an equivalent norm ∥·∥X,1 such that (X, ∥·∥X,1) has both the Kadec-
Klee and the Opial properties, and

∥ · ∥X ¬ ∥ · ∥X,1 ¬ LC,1∥ · ∥X .

In addition, (X, ∥ · ∥X,1) is uniformly convex in every direction.

Proof. By Theorem 37, the Banach space C([0, 1.],R) endowed with the
standard max-norm ∥·∥C has an equivalent norm ∥·∥C,1 such that the space
(C([0, 1.],R), ∥·∥C,1) has both the Kadec-Klee and the Opial properties, and

∥ · ∥C ¬ ∥ · ∥C,1 ¬ LC,1∥ · ∥C .

The space (C([0, 1.],R), ∥ · ∥C,1) is also uniformly convex in every direction.
By the universality of (C([0, 1],R), ∥ · ∥C) for the class of separable Banach
spaces, we have X ⊂ C([0, 1],R) (see the notation introduced in Remark 35
above). Now it is sufficient to take the restriction of the norm ∥ · ∥C,1 to X
in order to obtain the desired norm ∥ · ∥X,1.

5. Construction of the equivalent norm ∥ · ∥α,β,p,F
In this section we present a generalization of the Day norm ([13]) in c0 to
renorming of separable Banach spaces (X, ∥ · ∥X).
We begin by introducing the following notations. Let u={uγ}γ∈Γ∈c0(Γ).

We denote the support of u by N(u). Then the sequence of indices {τ(j, u)}j
is defined as follows:

1. if the support N(u) of u is infinite, then N(u) is enumerated as
{τ(j, u)}j in such a way that |uτ(j,u)| ­ |uτ(j+1,u)| for j ∈ N,

2. if the support N(u) = {γ̃} is a singleton, then we set τ(1, u) = γ̃ and
extend τ(·, u) to all of N so that τ(·, u) : N→ Γ is an injection,

3. if the support N(u) of u is finite and consists of k(u) ­ 2 elements,
then N(u) is enumerated as {τ(j, u)}k(u)j=1 in such a way that |tτ(j,u)| ­
|tτ(j+1,u)| for j ∈ {1, ..., k(u)− 1} and we extend τ(·, u) to all of N so
that τ(·, u) : N→ Γ is an injection,
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4. if u = 0, then τ(·, u) : N → Γ is defined to be an arbitrarily chosen
injection.

For each u = {uγ}γ∈Γ ∈ c0(Γ) we assume that Ñ(u) :={τ(j, u) ∈ Γ : j ∈ N}.

Inspired by the Day norm in the space c0(Γ) ([13]), we now introduce
its generalization ||| · |||β,p. Fix 1 < p < ∞ and take a strictly decreasing
sequence of positive terms β = {βj}j such that the series

∑∞
j=1 β

p
j is conver-

gent. For u = {ui}i∈Γ ∈ c0(Γ)\{0} we defineDβ,p(u) = {Diβ,p(u)}i∈Γ ∈ ℓp(Γ)
by

Diβ,p(u) :=

βju
τ(j,u), if i = τ(j, u) for some j ∈ N,

0, otherwise.

and set

|||u|||β,p := ∥Dβ,p(u)∥p =
 ∞∑
j=1

|βjuτ(j,u)|p
1/p

for u ∈ c0(Γ) \ {0} and |||0|||β,p := ∥Dβ,p(0)∥p = 0.

We recall an elementary inequality ([10], [43]), which turns out to play
an essential role in the proofs of our next results.

Lemma 41. Assume that

1. s = {sj}j is a positive decreasing sequence,

2. t = {tj}j ∈ c0,

3. tj ­ 0 for each j ∈ N,

4. The function g : N→ N is injective.

Then ∞∑
j=1

sj · tg(j) ¬
∞∑
j=1

sj · tτ(j,t).

Theorem 42 ([6]). For each 1 < p < ∞ the function ||| · |||β,p is a norm
in the space c0(Γ).
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Proof. For any α ∈ R \ {0}, u = {ui}i ∈ c0(Γ) \ {0} we have

|||αu|||β,p = ∥D(αu)∥p =
 ∞∑
j=1

∣∣βj(αu)τ(j,αu)∣∣p
 1p

=

|α|p ∞∑
j=1

∣∣βjuτ(j,u)∣∣p
 1p = |α| · |||u|||β,p.

Then, based on the conclusion 41, we obtain

|||u+ v|||β,p = ∥Dβ,p(u+ v)∥p

=

 ∞∑
j=1

|βj(u+ v)τ(j,u+v)|p
 1p

¬
 ∞∑
j=1

|βjuτ(j,u+v)|p
 1p +

 ∞∑
j=1

|βjvτ(j,u+v)|p
 1p

¬
 ∞∑
j=1

|βjuτ(j,u)|p
 1p +

 ∞∑
j=1

|βjvτ(j,v)|p
 1p

= |||u|||β,p + |||v|||β,p
dla u = {ui}i, {vi}i ∈ c0(Γ) \ {0} i u ̸= v.

It is easy to observe that

β1∥u∥c0(Γ) ¬ |||u|||β,p ¬
 ∞∑
j=1

βpj

 1p ∥u∥c0(Γ)
for each u ∈ c0(Γ).

In the case {βj}j = { 12j }j and p = 2, we obtain the classical Day norm
||| · ||| ([13]).

Theorem 43. If we additionally assume that there exist a constant L > 1
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and a strictly increasing sequence of natural numbers {jn}n such that
∞∑

j=jn+1

βpj ¬ Lβpjn+1

for each n ∈ N, then the Banach space (c0(Γ), ||| · |||β,p) is locally uniformly
convex.

The above theorem is a generalization of J. Rainwater’s theorem that the
space c0(Γ) with the Day norm ||| · ||| is a locally uniformly convex ([43]).
Since the assumptions about the norm ||| · |||β,p in theorem 43 are more
general than those in [43], the proof of Theorem 43 is significantly more
complicated compared to the proof of J. Rainwater’s theorem and very long
(see also [6], [7]). Therefore we omit it.

Now we will show how we can introduce an equivalent norm ∥ · ∥α,β,p,F
in separable spaces, which is related to the generalized Day norm and which
we will use in the proof of Theorem 47. This theorem is the key tool in
the proof of Theorem 48 on the existence of a diametrically complete set
with empty interior in infinite-dimensional, separable and reflexive Banach
spaces. We define the Day-type norm ∥ · ∥α,β,p in the following way — it is
a modification of the method by M. A. Smith ([45]).
Assume that (X, ∥ · ∥X) is a separable Banach space. Fix α ∈ (0, 1), and

let F = {f∗k}k be a sequence of nonzero functionals in X∗. Assume that the
sequence F = {f∗k}k separates points in X and that limk→∞ f∗k (x) = 0 for
each x ∈ X. By the Banach–Steinhaus theorem ([3]), the sequence F={f∗k}k
is bounded in X∗, i.e. ∥f∗k∥X∗¬ K̄ for each k ∈ N, whereby we can assume
that 1 ¬ K̄ ∈ R. To each x ∈ X, we now assign a sequence of the form

u(x) = {ui(x)}i = {α∥x∥X , f∗1 (x), f∗2 (x), f∗2 (x), ..., f∗k (x), ..., f∗k (x), ...} ∈ c0.

Here we repeat the k-th coordinate of F(x) exactly k times. We fix 1<p <∞
and take a strictly decreasing sequence β = {βj}j of positive terms such that∑∞
j=1 β

p
j converges. Next, using the generalized Day norm, we define a norm

in X as follows:

∥x∥α,β,p,F = |||u(x)|||β,p = ∥Dβ,p(u(x))∥p,

where ∥ · ∥p is the standard norm in the space ℓp. Since ∥f∗k∥X∗ ¬ K̄ and
∥f∗k (x)∥X∗ ¬ ∥f∗k∥X∗ · ∥x∥X for k = 1, 2, ..., x ∈ X we immediately obtain
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the inequality

∥x∥α,β,p,F = |||{α∥x∥X , f∗1 (x), f∗2 (x), f∗2 (x), ..., f∗k (x), ..., f∗k (x), ...}|||β,p

¬
 ∞∑
j=1

βpj K̄
p∥x∥pX

 1p = K̄
 ∞∑
j=1

βpj

 1p ∥x∥X .
Hence we have

αβ1∥x∥X ¬ ∥x∥α,β,p,F ¬ K̄
 ∞∑
j=1

βpj

 1p ∥x∥X (2)

for each x ∈ X. This means that the norm ∥x∥α,β,p,F is equivalent to the
norm ∥ · ∥X .

Now we will show that the function ∥ · ∥α,β,p,F is a norm. It is enough to
verify that it satisfies the triangle inequality. This follows from the definition
of the function ∥ · ∥α,β,p,F and the following auxiliary lemma.

Lemma 44. Under the above assumptions and notations we have

∥u(x+ y)∥β,p ¬ ∥u(x) + u(y)∥β,p ¬ ∥u(x)∥β,p + ∥u(y)∥β,p.

for every x, y ∈ X.

Proof. For x, y ∈ X we have

u(x+ y) = {ui(x+ y)}i

= {α∥x+ y∥X , f∗1 (x+ y), f∗2 (x+ y), f∗2 (x+ y), ..., f∗k (x+ y), ..., f∗k (x+ y), ...}
and

u(x) + u(y) = {ui(x) + ui(y)}i
= {α∥x∥X+α∥y∥X , f∗1 (x+y), f∗2 (x+y), f∗2 (x+y), ..., f∗k (x+y), ..., f∗k (x+y), ...}.
Thus we obtain

|ui(x)|+ |ui(y)| ­ |ui(x+ y)|
i = 1, 2, . . . .
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Next, using the inequality given in Lemma 41 and Theorem 42, we get

|||u(x+ y)|||β,p =
 ∞∑
j=1

βpj |uτ(j,u(x+y))(x+ y)|p
 1p

¬
 ∞∑
j=1

βpj

(
|uτ(j,u(x+y))(x) + uτ(j,u(x+y))(y)|

)p 1p

¬
 ∞∑
j=1

βpj

(
|uτ(j,u(x)+u(y))(x) + uτ(j,u(x)+u(y))(y)|

)p 1p
= |||u(x) + u(y)|||β,p

¬ |||u(x)|||β,p + |||u(y)|||β,p.

By modifying the proof of Maluta’s theorem (Theorem 3.1 in [34]), and
the proof of Theorem 5.4 in [9] we are able to prove the theorem on the
transfer of the weak Opial property from the space (X, ∥ · ∥X) to the space
(X, ∥ · ∥α,β,p,F ).
Theorem 45. Let (X, ∥ ·∥X) be a separable Banach space. Under the above
assumptions and notations, if a Banach space (X, ∥ · ∥X) has the non-strict
Opial property, then so does the Banach space (X, ∥ · ∥α,β,p,F ).
Proof. Assume that a sequence {xn}n ⊂ X tends weakly to 0 ∈ X and that
x ∈ X \ {0}. Without any loss of generality we may assume that the limits
limn ∥xn∥X and limn ∥xn − x∥X exist. Take 0 < ϵ < 1. By the non-strict
Opial property of the Banach space (X, ∥ · ∥X), we have

lim
n
∥xn∥X ¬ lim

n
∥xn − x∥X

and therefore there exists ñ0 ∈ N such that

∥xn∥X < lim
n
∥xn∥X +

ϵ

2
¬ ∥xn − x∥X + ϵ (3)

for each ñ0 < n ∈ N. Since limk f∗k (x) = 0, there exists k̃ ∈ N such that

|f∗k (x)| < ϵ
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for each k̃ < k ∈ N. Therefore

|f∗k (xn)| ¬ |f∗k (xn)− f∗k (x)|+ |f∗k (x)|

< |f∗k (xn)− f∗k (x)|+ ϵ
for each k̃ < k ∈ N and all n ∈ N.
Now for each 1 ¬ k ¬ k̃, we have either f∗k (x) = 0 or f

∗
k (x) ̸= 0. In

the second case, setting ηk := min{ϵ, 12 |f∗k (x)|} and taking into account the
weak convergence of {xn} to 0, we find ñk ∈ N such that

|f∗k (xn)| < ηk

for ñk < n ∈ N and hence we obtain

|f∗k (xn)− f∗k (x)| ­ |f∗k (x)| − |f∗k (xn)|

> |f∗k (x)| − ηk ­
1
2
|f∗k (x)| ­ ηk > |f∗k (xn)|

for ñk < n. It is obvious that in the first case we have

|f∗k (xn)| ¬ |f∗k (xn)− f∗k (x)|

and then we set ñk := 1. This implies that

|f∗k (xn)| ¬ |f∗k (xn)− f∗k (x)|

for each 1 ¬ k ¬ k̃ and all max{ñ1, ..., ñk̃} < n ∈ N.
Combining all the above inequalities, we get

|f∗k (xn)| ¬ |f∗k (xn)− f∗k (x)|+ ϵ = |f∗k (xn − x)|+ ϵ (4)

for each k ∈ N and for all max{ñ1, ..., ñk̃} < n ∈ N. Therefore, from the
inequalities (3), (4) and from the defining the function u(·), it follows that

|ui(xn)| ¬ |ui(xn − x)|+ ϵ, (5)

for each i ∈ N and for all max{ñ0, ñ1, ..., ñk̃} < n ∈ N.
Next, take max{ñ0, ñ1, ..., ñk̃} < n ∈ N. Assuming in the Lemma 41

{sj}j = {βpj }j , {tj}j = {|uτ(j,u(xn−x))(xn − x)|p}j , {g(j)}j = {τ(j, u(xn))}j
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and using the inequality (5) we obtain

∥xn∥α,β,p,F = |||u(xn)|||β,p∥Dβ,p(u(xn))∥p

=

 ∞∑
j=1

βpj |uτ(j,u(xn))(xn)|p
 1p

¬
 ∞∑
j=1

βpj

(
|uτ(j,u(xn))(xn − x)|+ ϵ

)p 1p

¬
 ∞∑
j=1

βpj

∣∣∣uτ(j,u(xn))(xn − x)∣∣∣p
 1p + ϵ

 ∞∑
j=1

βpj

 1p

¬
 ∞∑
j=1

βpj

∣∣∣uτ(j,u(xn−x))(xn − x)∣∣∣p
 1p + ϵ

 ∞∑
j=1

βpj

 1p

= ∥Dβ,p(u(xn − x))∥p + ϵ
 ∞∑
j=1

βpj

 1p

= |||u(xn − x)|||β,p + ϵ
 ∞∑
j=1

βpj

 1p

= ∥xn − x∥α,β,p,F + ϵ
 ∞∑
j=1

βpj

 1p .
Finally, by letting n tend to +∞, we get

lim sup
n
∥xn∥α,β,p,F ¬ lim sup

n
∥xn − x∥α,β,p,F + ϵ

 ∞∑
j=1

βpj

 1p .
Since 0 < ϵ < 1 is arbitrary, we conclude that

lim sup
n
∥xn∥α,β,p,F ¬ lim sup

n
∥xn − x∥α,β,p,F ,

as required.
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Assuming additionally that the space (X, ∥ · ∥X) has the Kadec-Klee
property and that for a sequence β={βj}j there exist a constant L > 1
and a strictly increasing sequence of natural numbers {jn}n, such that∑∞
j=jn+1 β

p
j ¬ Lβpjn+1 for each n ∈ N and applying Theorem 43 and M. A.

Smith’s method ([45]) (see also the proof of Theorem 6.3 in [9]), we obtain
the following theorem.

Theorem 46. Let (X, ∥ · ∥X) be an infinite-dimensional, reflexive and sep-
arable Banach space. If (X, ∥ · ∥X) has the Kadec-Klee property, then the
Banach space (X, ∥ · ∥α,β,p,F ) is LUR.

Proof. Let x ∈ X and {xn}n ⊂ X be given such that ∥x∥α,β,p,F = 1,
limn ∥xn∥α,β,p,F= 1 and limn ∥x+xn∥α,β,p,F=2. So we have |||u(x)|||β,p = 1,
limn |||u(xn)|||β,p=1, limn |||u(x+ xn)|||β,p = 2 and by Lemma 44 we get

2 = |||u(x)|||β,p + lim
n
|||u(xn)|||β,p ­ lim sup

n
|||u(x) + u(xn)|||β,p

­ lim inf
n
|||u(x) + u(xn)|||β,p ­ lim

n
||||u(x+ xn)|||β,p = 2,

and this means that limn |||u(x) + u(xn)|||β,p = 2. Now applying the local
uniform convexity of (c0, ||| · |||β,p) (Theorem 43), we immediately obtain the
strong convergence of the sequence {u(xn)}n to u(x) in the norm ||| · |||β,p.
But we have

β1∥u(x)− u(xn)∥c0 ¬ |||u(x)− u(xn)|||β,p
n−→ 0

and
∥u(x)− u(xn)∥c0 =

= max{α|∥x∥X − ∥xn∥X |, |f∗1 (x)− f∗1 (xn)|, |f∗2 (x)− f∗2 (xn)|, ...}.
This implies that limn ∥xn∥X=∥x∥X and limn f∗k (xn)=f∗k (x) for k=1, 2, ....
By assumption, the sequence of functionals F = {f∗k}k ⊂ X∗ separates
the points in (X, ∥ · ∥X) and therefore the reflexivity of the space (X,∥ · ∥X)
and the convergence limn f∗k (xn) = f

∗
k (x) for every k = 1, 2, ... imply weak

convergence of the sequence {xn}n to x. Finally, it follows from the Kadec-
Klee property of the space ∥ · ∥X , weak convergence of the sequence {xn}n
to x and the equality lim

n
∥xn∥X = ∥x∥X that limn xn = x in (X, ∥ · ∥X).

The norms ∥ · ∥X and ∥ · ∥α,β,p,F are equivalent, which completes the proof
of the theorem.
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6. Existence of a diametrically complete set with empty
interior in a reflexive and separable Banach space

In this section, we will prove that, after an appropriate renorming, in ev-
ery infinite-dimensional, separable and reflexive Banach space there exists
a diametrically complete set with empty interior. We will show, namely,
that there exists an equivalent norm that satisfies the assumptions of The-
orem 30. The construcion of this norm is the following (see also the proof
of Theorem 3.1 in [9]).

If the Banach space (X, ∥ · ∥X) is infinite-dimensional and separable,
then from Theorem 40 it follows that this space has an equivalent norm
∥ · ∥X,1 such that the space (X, ∥ · ∥X,1) has both the Kadec-Klee property
and the Opial property. So without any loss of generality we can assume
that that the norm ∥ · ∥X has both these properties. By Theorem 22, there
exists a closed subspace Y of the Banach space (X, ∥ · ∥X) such that the
quotient space X/Y with the canonical norm ∥ · ∥X/Y has a Schauder basis.
We may also assume that dimY ­ 1 (see Theorem 23). For this quotient
space X/Y , there exists the standard embedding ι : X → X/Y . Let {ẑm}m
be a normalized basis in (X/Y, ∥ · ∥X/Y ) and let {ẑ∗m} be the sequence of
biorthogonal functionals associated with this basis. Then there is a constant
K̃ such that ∥ẑ∗m∥(X/Y )∗ ¬ K̃ for all m ∈ N. Next we choose a normalized
sequence of functionals {f̃∗r }r in (X∗, ∥ · ∥X∗) which separates the points
in (X, ∥ · ∥X). We also fix 0 < α ¬ 12 and for each x ∈ X, we define the
sequence

F̂(x) = {f̂∗k (x)}k = {
α

2
f̃∗1 (x), ẑ

∗
1(ι(x)),

α

22
f̃∗2 (x), ẑ

∗
2(ι(x)), ...} ∈ c0.

Then the sequence F̂ = {f̂∗k}k is bounded in X∗, that is, ∥f∗k∥X∗ ¬ K̃
for each k ∈ N. Using this sequence, we construct a norm ∥ · ∥α,β,p,F̂ as in
Section 5, where 1 < p <∞, 0 < α < 1 i β = {βj}j is a strictly decreasing
sequence of positive terms such that the series

∑∞
j=1 β

p
j is convergent. This

norm is equivalent to the norm ∥ · ∥X .
Modifying the method used by M. A. Smith and B. Turett ([46]), we are

able to prove the following theorem.

Theorem 47. Assume that

1. (X, ∥ · ∥X) is an infinite-dimensional, reflexive and separable Banach
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space,

2. Y is a closed subspace of (X, ∥ · ∥X) such that dimY ­ 1 and the
quotient space X/Y with the canonical norm ∥ · ∥X/Y has a Schauder
basis,

3. ι : X → X/Y is the standard embedding,

4. {ẑm}m is a normalized Schauder basis in (X/Y, ∥ · ∥X/Y ) and {ẑ∗m} is
the sequence of biorthogonal functionals associated with this basis,

5. {f̃∗r }r is a normalized sequence of functionals in (X∗, ∥ · ∥X∗), which
separates the points in (X, ∥ · ∥X),

6. 0 < α ¬ 12 ,

7. 1 < p <∞,

8. β = {βj}j is a strictly decreasing sequence of positive terms β = {βj}j
such that the series

∑∞
j=1 β

p
j is convergent,

9. F̂(x) = {f̂∗k (x)}k = {α2 f̃∗1 (x), ẑ∗1(ι(x)), α22 f̃∗2 (x), ẑ∗2(ι(x)), ...} ∈ c0.

Then the space (X, ∥ · ∥α,β,p,F̂ ) lacks normal structure.

Proof. By the reflexivity of (X, ∥ · ∥X), there exists a sequence {zm}m ⊂ X
such that zm ∈ ẑm and ∥zm∥X = 1 for each m ∈ N. Then for m2 > m1, we
have

F̂(zm2 − zm1) = {f̂∗k (zm2 − zm1)}k
= {α
2
f̃∗1 (zm2−zm1), ẑ∗1(ι(zm2−zm1)),

α

22
f̃∗2 (zm2−zm1), ẑ∗2(ι(zm2−zm1)), ...}

=
{
α

2
f̃∗1 (zm2 − zm1), 0,

α

22
f̃∗2 (zm2 − zm1), 0, ...,

α

2m1−1
f̃∗m1−1(zm2−zm1), 0,

α

2m1
f̃∗m1(zm2−zm1),−1,

α

2m1+1
f̃∗m1+1(zm2−zm1),

0, ...,
α

2m2−1
f̃∗m2−1(zm2 − zm1), 0,

α

2m2
f̃∗m2(zm2 − zm1),

1,
α

2m2+1
f̃∗m2+1(zm2 − zm1), 0, ...

}
and

α

2r
|f̃∗r (zm2 − zm1)| ¬

α

2r
2 ¬ 1
2
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for all r ∈ N. Next, we also have

α∥zm2 − zm1∥X ¬ 2α ¬ 1.

and therefore2m1+2m2∑
j=1

βpj

 1p ¬ ∥zm2 − zm1∥α,β,p,F̂ ¬
 ∞∑
j=1

βpj

 1p ,
This means that diam∥·∥α,β,p,F̂{zm}m =

(∑∞
j=1 β

p
j

) 1
p .

Now we compute limm dist∥·∥α,β,p,F̂ (zm+1, conv{z1, ..., zm}). To this end,
suppose a1 + . . . + am = 1, where 0 ¬ ak ¬ 1 for k = 1, . . . ,m. Then we
have

F̂(zm+1 −
m∑
k=1

akzk) = {f̂∗k (zm+1 −
m∑
k=1

akzk)}k

=

{
α

2
f̃∗1 (zm+1 −

m∑
k=1

akzk),−a1,
α

22
f̃∗2 (zm+1 −

m∑
k=1

akzk),−a2, ...,

α

2m
f̃∗m(zm+1 −

m∑
k=1

akzk),−am,
α

2m+1
f̃∗m+1(zm+1 −

m∑
k=1

akzk), 1,

α

2m+2
f̃∗m+2(zm+1 −

m∑
k=1

akzk), 0, ...

}
and

α

2r
|f̃∗r (zm+1 −

m∑
k=1

akzk)| ¬
α

2r
2 ¬ 1
2

for all r ∈ N. Next, we also have

α∥zm+1 −
m∑
k=1

akzk∥X ¬ 2α ¬ 1.

Hence we obtain2m+2∑
j=1

βpj

 1p¬ ∥zm+1− m∑
k=1

akzk∥α,β,p,F̂ ¬ diam∥·∥α,β,p,F̂{zm}m=
 ∞∑
j=1

βpj

 1p .
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This means that limm dist∥·∥α,β,p,F̂ (zm+1, conv{z1, ..., zm}) =
(∑∞
j=1 β

p
j

) 1
p .

Hence the sequence {zm}m⊂X is diametral in (X, ∥ · ∥α,β,p,F̂ ) and applying
Theorem 16, we complete the proof.

Now we can prove the theorem which turns out to be crucial in the proof
of the main result of our chapter.

Theorem 48. (see also [9]) Each infinite-dimensional, reflexive and sep-
arable Banach space (X, ∥ · ∥X) has an equivalent norm ∥ · ∥0 such that
(X, ∥ · ∥0) is LUR and contains a diametrically complete set the interior of
which is empty.

Proof. As noted at the beginning of this chapter, we may assume without
loss of generality that the Banach space (X, ∥ ·∥X) has both the Kadec-Klee
property and the Opial property. Consider the norm ∥·∥0 = ∥·∥α,β,p,F̂ where
the norm ∥ · ∥α,β,p,F̂ was introduced earlier in this chapter, with 0 < α ¬ 12 ,
1 < p < ∞ and a strictly decreasing sequence β = {βj} of positive terms
such that the series

∑∞
j=1 β

p
j converges. Assume further that there exists

a constant L > 1 and a strictly increasing sequence of natural numbers
{jn}n such that

∑∞
j=jn+1 β

p
j ¬ Lβpjn+1 for every n ∈ N. By Theorem 45,

the space (X, ∥ · ∥0) has the non-strict Opial property and by Theorem
47 this space lacks normal structure. Therefore, we can apply Theorem 30
to the space (X, ∥ · ∥0), from which it follows that this space constains
a diametrically complete set with empty interior. Finally, by Theorem 46,
we conclude that the space (X, ∥ · ∥0) is locally uniformly convex.

7. Existence of a diametrically complete set with empty
interior in a reflexive Banach space

In this section, we will show how the problem of existence of a diametrically
complete set with empty interior in any infinite-dimensional reflexive Ba-
nach space can be reduced to the same problem in an infinite-dimensional,
separable and reflexive Banach space.
We begin with the auxiliary theorem.

Theorem 49. Let (X1, ∥·∥1) and (X2, ∥·∥2) be infinite-dimensional Banach
spaces, and let X = X1 ×X2 be endowed with the norm

∥x∥ :=
√
∥x1∥21 + ∥x2∥22,
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where x = (x1, x2) ∈ X. If (X1, ∥ · ∥1) contains a diametrically complete set
the interior of which is empty, then (X, ∥ · ∥) also contains a diametrically
complete set the interior of which is empty.

Proof. Let C1 ⊂ X1 be a diametrically complete set in (X1, ∥ · ∥1) such that
the interior of C1 in (X1, ∥·∥1) is empty. Set C := C1×{0} ⊂ X. It is obvious
that the interior of C is empty in (X, ∥ ·∥) and that diam∥·∥C = diam∥·∥1C1.
To show that C is diametrically complete, we take x = (x1, x2) ∈ X \ C,
and consider the following two cases.
Case 1. x1 /∈ C1. Since the set C1 is diametrically complete in (X1, ∥·∥1),

we have

diam∥·∥(C∪{x}) ­ sup
(x̃1,0)∈C

∥(x̃1, 0)−(x1, x2)∥ = sup
x̃1∈C1

√
∥x̃1 − x1∥21 + ∥x2∥22

­ sup
x̃1∈C1

∥x̃1 − x1∥1 > diam∥·∥1C1 = diam∥·∥C.

Case 2. x1 ∈ C1. Then, from the assumption that x = (x1, x2) /∈ C =
C1 × {0} we have x2 ̸= 0. Since the set C1 is diametrically complete with
empty interior, C1 is diametral, and therefore we obtain

diam∥·∥(C ∪ {x}) ­ sup
x̃1∈C1

√
∥x̃1 − x1∥21 + ∥x2∥22 >

> sup
x̃1∈C1

∥x̃1 − x1∥1 = diam∥·∥1C1 = diam∥·∥C.

This completes the proof.

Remark 50. Theorem 49 is also valid if (X2, ∥ · ∥2) is a finite-dimensional
Banach space.

Now we can extend Theorem 48 to all infinite-dimensional and reflexive
Banach spaces.

Theorem 51. Each infinite-dimensional reflexive Banach space (X, ∥ · ∥)
has an equivalent norm ∥ · ∥0 such that (X, ∥ · ∥0) is LUR and contains
a diametrically complete set the interior of which is empty.

Proof. By theorem 48 it follows that our theorem is true for separable
spaces. Assume that (X, ∥ · ∥) is an infinite-dimensional, non-separable and
reflexive Banach space. By Theorem 25 there exists an infinite-dimensional,
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linear, close and separable subspace X1 of X, and a linear projection P of X
onto X1 with ∥P∥XX1 = 1. Hence X := X1 ⊕X2, where X2 := (I − P )(X)
and I is the identity operator on X.
It then follows from Theorem 48 that (X1, ∥·∥), as an infinite-dimensional,

separable and reflexive Banach space, has an equivalent norm ∥·∥1 such that
(X1, ∥ · ∥1) is LUR and contains a diametrically complete set C1 the interior
of which is empty. Moreover, by Troyanski’s theorem (Theorem 6), the Ba-
nach space (X2, ∥ · ∥) admits an equivalent locally uniformly convex norm
∥ · ∥2. So we can define on X an equivalent norm ∥ · ∥0 by setting

∥x∥0 :=
√
∥x1∥21 + ∥x2∥22

for x = x1 ⊕ x2 ∈ X, where x1 = Px ∈ X1 i x2 = (I − P )x ∈ X2.
Theorem 5 implies that (X, ∥ · ∥0) is LUR and by Theorem 49 we get that
C = C1 × {0} ⊂ X is a diametrically complete set the interior of which is
empty.

As a conclusion from the theorems 49, 51 and remark 50 we get the
following generalization of Theorem 51.

Theorem 52. Let (X1, ∥ · ∥1) and (X2, ∥ · ∥2) be Banach spaces and let
X = X1 ×X2 be endowed with the norm

∥x∥ :=
√
∥x1∥21 + ∥x2∥22,

for x = (x1, x2) ∈ X. If (X1, ∥ · ∥1) is an infinite-dimensional and reflexive
space, then (X, ∥ · ∥) has an equivalent norm ∥ · ∥0 such that (X, ∥ · ∥0)
contains a diametrically complete set the interior of which is empty.

Remark 53. Observe also that the condition given in Theorem 30 for the
existence of diametrically complete sets with empty interior is only sufficient,
but not necessary, as the following example shows. In this example we use
a result of E. Maluta ([34]).

Example 54. In [34] E. Maluta has shown that ℓ2 furnished with the Day
type norm ∥·∥L ([46]) is LUR and contains diametrically complete sets with
empty interior. We consider, in addition, the Banach space (Lp([0, 1],R),
with the standard norm ∥ · ∥p, 1 < p <∞, p ̸= 2, and we set

X := ℓ2 × Lp([0, 1],R)
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with the norm
|||(x1, x2)||| :=

√
∥x1∥2L + ∥x2∥2p .

The reflexive Banach space (X, ||| · |||) is LUR (see Theorem 5) and does
not have the non-strict Opial property, but by Theorem 49 it does contain
diametrically complete set with empty interior.

Finally, we present an interesting and pertinent example of a certain
nonreflexive Banach space.

Example 55. It is not known whether every reflexive Banach space (X, ∥·∥)
can be renormed so as to have the non-strict Opial property. This statement
is false in general as the Banach space ℓ∞(Γ) with an uncountable Γ shows
( [15]). In addition, ℓ∞(Γ) with an uncountable Γ cannot be equivalently
renormed so as to be LUR or even strictly convex ([14]). Hence for uncount-
able Γ, the space

X := ℓ2 × ℓ∞(Γ)
with the norm

∥(x1, x2)∥ :=
√
∥x1∥2L + ∥x2∥2∞,

admits no norm with the non-strict Opial property and no strictly convex
norm, but by E. Maluta’s result ( [34]) and Theorem 52 it does contain
diametrically complete set with empty interior.
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Summary

In this chapter we prove that every infinite-dimensional and reflexive Ba-
nach space (X, ∥ · ∥) admits an equivalent norm ∥ · ∥0 such that (X, ∥ · ∥0)
contains a diametrically complete set with empty interior. First we will show
the existence of such a norm for each separable reflexive Banach space. Then
we reduce the problem of existence a diametrically complete set with empty
interior in any infinite-dimensional and reflexive Banach space to the sepa-
rable case.

Streszczenie

W tej pracy dowodzimy, że każda nieskończenie wymiarowa i refleksywna
przestrzeń Banacha (X, ∥ · ∥) dopuszcza normę równoważną ∥ · ∥0 taką,
że (X, ∥ · ∥0) zawiera zbiór diametralnie zupełny o pustym wnętrzu. Na-
jpierw wykażemy istnienie takiej normy dla każdej ośrodkowej refleksywnej
przestrzeni Banacha. Następnie redukujemy problem istnienia zbioru diame-
tralnie zupełnego o pustym wnętrzu w dowolnej nieskończenie wymiarowej
i refleksywnej przestrzeni Banacha do przypadku ośrodkowego.
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Chapter 2

New retraction constant for the class
of separable Banach spaces containing

an isometric copy of c0

Dawid Kapitan

1. Introduction

Let X denote an infinite-dimensional real Banach space with the closed unit
ball BX . Since the work of Lin and Sternfeld [9] it is known that for any
k > 1 there exists a map T : BX → BX such that T is k-lipschitzian (i.e.,
for every x, y ∈ BX , ∥Tx− Ty∥ ¬ k∥x− y∥) and

d(T ) := inf {∥x− Tx∥ : x ∈ BX} > 0.

It is natural to attempt to provide a uniform estimate of minimal displace-
ment for the entire class of Lipschitz self-mappings of the closed unit ball.
For this purpose, Goebel [4] introduced the characteristic

ψX(k) = sup {d(T ) | T : BX → BX , T ∈ L(k)} , k ­ 1.
This paper is a part of D. Kapitan’s master’s thesis, which received a distinction in the

Polish Mathematical Society’s competition in honour of Józef Marcinkiewicz (1910–1940).
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Here, L(k) denotes the class of k-lipschitzian maps. It is known that in any
Banach space X we have

ΨX(k) ¬ 1−
1
k
,

and for some spaces the above estimate is exact, i.e., there are spaces for
which ΨX(k) = 1 − 1/k for every k ­ 1. We call such spaces extremal.
Moreover, X is stricly extremal, if for any k ­ 1 there is T : BX → BX such
that T ∈ L(k) and ∥x − Tx∥ > 1 − 1/k for any x ∈ BX . A broad class of
such spaces is provided by the following, recent result:

Theorem 1. ([7]) If a separable Banach space X contains an isomorphic
(resp. isometric) copy of the space c0, then X as well as all subspaces of X
of finite codimension are extremal (resp. strictly extremal).

Here, c0 denotes the Banach space of all sequences converging to 0 en-
dowed with its standard supremum norm.
The problem of evaluating ΨX(k) is strictly connected with the so-called

optimal retraction problem. Recall that in every infinite-dimensional Banach
space X there exists a lipschitzian retraction R : BX → SX from the closed
unit ball onto its boundary (the fact that R is a retraction means that
Rx = x for every x ∈ SX). This naturally raises the question of the optimal
retraction constant

k0(X) = inf {k : there exists a k-lipschitzian retraction R : BX → SX} .

Over the years, numerous authors have employed various techniques to ob-
tain estimates of the optimal retraction constant in specific Banach spaces.
Still, the exact value of k0(X) remains unknown for any Banach space.
The universal bound from below is k0(X) ­ 3 and for Hilbert space H,
k0(H) > 4.5 (see Chapter 21 in [5]). Considerably more work has been de-
voted to deriving upper bounds for the retraction constant. The best one
so far was obtained in the space BC0(R) of all bounded and continuous
functions vanishing at 0 provided with the standard supremum norm. The
construction from [10] shows that k0(BC0(R)) ¬ 6.828.
In what follows, we will be concerned with general estimates of k0(X) for

some classes of Banach spaces. It has been known for a long time that good
estimates of function ΨX(k) can provide reasonable bounds for the optimal
retraction constant. In the extremal case the following estimate from [1] is
known:
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Theorem 2. If a Banach space X is extremal, then k0(X) ¬ 30.84.

Better estimate of k0(X) was later obtained in [6] under the additional
assumption that space X is cut-invariant. Let us clarify the meaning of this.
Let K be an infinite set and let B(K) denote the space of all bounded

functions x : K → R provided with the norm ∥x∥ = sup {|x(t)| : t ∈ K}.
Call subspace X ⊂ B(K) cut-invariant, if for any x ∈ X, Qx := α ◦ x ∈ X,
where α is a cut function defined by the formula

α(t) =


−1 if t ¬ −1,
t if t ∈ [−1, 1],
1 if t ­ 1.

Clearly, Q is a nonexpansive retraction from X onto its closed unit ball BX .
Moreover, Q generates the family of retractions Qr : X → rBX defined by

Qrx =

 0 if r = 0,

rQ
(1
r
x
)
if r > 0.

It is easy to check that for any r1, r2 ­ 0 and x, y ∈ X the following
inequality holds:

∥Qr1x−Qr2y∥ ¬ max {∥x− y∥, |r1 − r2|} .

The class of cut-invariant spaces include many classical spaces such as c0,
c, C[0, 1], BC(R) and some of their subspaces.
The aforementioned result from [6] concerning the optimal retraction

constant in cut-invariant spaces states that:

Theorem 3. If a Banach space X is extremal and cut-invariant, then
k0(X) ¬ 4(1 +

√
2)2 ≈ 23.31.

The above estimate was significantly improved in [11]. The main result
of the quoted paper states that k0(X) ¬ 4(2+

√
3) ≈ 14.92 for any extremal

and cut-invariant Banach space X.
Note, however, that there is a wide collection of Banach spaces which

are extremal but not cut-invariant and the best retraction constant for this
class is provided by Theorem 2. Examples of such spaces include Banach
spaces Cn[0, 1] of differentiable functions provided with all kinds of stan-
dard norms. Much more examples can be found among the hyperplanes of
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classical Banach spaces, e.g.,

X1 =
{
x ∈ c : lim

i→∞
xi =

1
2
x1
}
, X2 =

{
x ∈ C[0, 1] :

∫ 1
0
x(t)dt = 0

}
.

Note that spaces Cn[0, 1] contain a copy of c0, either isomorphic or isometric,
depending on the norm. Spaces X1, X2 contain an isometric copy of c0.
Extremality of all the above mentioned spaces follows from Theorem 1.
In the next section we will provide a general estimate of k0(X) for the

class of separable Banach spaces containing an isometric copy of c0 which
is better than the one provided by Theorem 2.
The most current state of knowledge about the optimal retraction prob-

lem and related topics can be found in the book [3], which is the second
edition of [12].

2. Main result

Inspired by the construction from [6] we will now prove the following result.

Theorem 4. If X is a separable Banach space which contains an isometric
copy of c0, then k0(X) ¬ 4(1 +

√
2)2.

In the proof of this fact we will make use of the map T : Bc0 → Bc0 from
Example 20.2 in [5] defined by the formula

Tx = (1, α(kx1), α(kx2), α(kx3), . . .), k > 1 fixed,

where α is the cut function defined in the previous section. It is easily verified
that T ∈ L(k) and for any x ∈ Bc0 , ∥x − Tx∥ > 1 − 1/k. Also, recall that
if a separable Banach space contains an isometric copy of c0, then there is
another copy of c0 which is 1-complemented (see e.g. [7] for details).

Proof of Theorem 4. If X contains an isometric copy of c0, then there exists
another subspace Z ⊂ X such that Z is isometric to c0 and and there is
a linear projection P from X onto Z such that ∥P∥ = 1. Let φ : Z → c0
denote the isometry and let T : BZ → BZ be k-lipschizian map such that
∥x − Tx∥ > 1 − 1/k for any x ∈ BZ . Now, consider T1 : 2BX → BZ ⊂ BX
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defined by the formula

T1x =


TPx, ∥x∥ ¬ 1,
T Q̂Px, 1 < ∥x∥ ¬ 2− 1k ,

Q̂k(2−∥x∥)TQ̂Px, 2− 1k < ∥x∥ ¬ 2,

where
Q̂ = φ−1 ◦Q ◦ φ, Q̂k(2−∥x∥) = φ

−1 ◦Qk(2−∥x∥) ◦ φ,
are retractions from the previous section transferred to the space Z. We
leave to the reader to check that T1 ∈ L(k). Moreover, ∥x − T1x∥ > 1 − 1k
for every x ∈ 2BX . Indeed, if ∥x∥ ¬ 1, then

∥x− T1x∥ = ∥x− TPx∥ ­ ∥Px− PTPx∥ = ∥Px− TPx∥ > 1−
1
k
.

If 1 < ∥x∥ ¬ 2− 1k , then

∥x− T1x∥ = ∥x− TQ̂Px∥ ­ ∥Px− PTQ̂Px∥ = ∥Px− TQ̂Px∥
­ ∥Q̂Px− Q̂T Q̂Px∥ = ∥Q̂Px− TQ̂Px∥

> 1− 1
k
.

Finally, if 2− 1k < ∥x∥ ¬ 2, then ∥T1x∥ ¬ k(2− ∥x∥). Consequently,

∥x− T1x∥ ­ ∥x∥ − k(2− ∥x∥) > 1−
1
k
.

For x ∈ BX , put T2x = 12T1(2x). Then T2 : BX → BX is k-lipschitzian,
T2(SX) = {0} and for any x ∈ BX ,

∥x− T2x∥ = ∥x−
1
2
T1(2x)∥ =

1
2
∥2x− T1(2x)∥ >

1
2

(
1− 1

k

)
.

Let Prad denote the radial projection from X onto BX and recall that
Prad ∈ L(2). Now, define the retraction R : BX → SX by the formula

Rx = Prad

(
x− T2x
1
2(1− 1k )

)
.
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Then, for every x, y ∈ BX ,

∥Rx−Ry∥ ¬ 2
1
2(1− 1k )

∥x− T2x− y + T2y∥

¬ 4k
k − 1(∥x− y∥+ ∥T2x− T2y∥)

¬ 4k(k + 1)
k − 1 .

Since k > 1 was arbitrary, we get

k0(X) ¬ 4min
k>1

k(k + 1)
k − 1 = 4(1 +

√
2)2 ≈ 23.31.

Let us finish our work with some concluding remarks.

Remark 5. The spaces Cn[0, 1] considered with the norm

∥x∥ =
n−1∑
i=0

|x(i)(0)|+ max
t∈[0,1]

|x(n)(t)|

contain an isometric copy of c0. Hence, k0(Cn[0, 1], ∥ ·∥) ¬ 23.31. So far, the
best estimate was 30.84.

Remark 6. Recall that a Banach space X is called an L1-predual (or
a Lindenstrauss space) if its dual space X∗ is isometric to Lebesgue space
L1(µ) for some measure µ. A large collection of such spaces is presented in
Section 4 in [8]. Another very interesting class of ℓ1-preduals was investi-
gated in [2], namely, the class of hyperplanes Wf = ker f in the space c of
convergent sequences, where f ∈ ℓ1 = c∗, ∥f∥ = 1 and |fj0 | ­ 1/2 for some
j0 ∈ N. Hyperplanes in c are a great source of extremal spaces which fail to
be cut-invariant.
The old result of Zippin [13] states that every infinite-dimensional L1-

predual contains an isometric copy of c0. In the light of the Theorem 4,
k0(X) ¬ 23.31 for any separable L1-predual X. Again, the best constant for
this class of spaces was 30.84.

48



Dawid Kapitan

References

[1] M. Baronti, E. Casini, C. Franchetti, The retraction constant in some
Banach spaces, J. Approx. Theory 120 (2) (2003) 296–308.

[2] E. Casini, E. Miglierina, Ł. Piasecki, Hyperplanes in the space of conver-
gent sequences and preduals of ℓ1, Canad. Math. Bull. 58 (2015) 459–470.
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Summary

In every infinite-dimensional Banach space there exists a lipschitzian retrac-
tion from the closed unit ball onto its boundary. In this chapter we prove
that if a separable Banach space contains an isometric copy of c0, then the
optimal retraction constant of the space does not exceed 4(1 +

√
2)2. In

particular, this provides a new universal retraction constant in the class of
separable L1-preduals.

Streszczenie

W każdej nieskończenie wymiarowej przestrzeni Banacha istnieje retrakcja
lipschitzowska z domkniętej kuli jednostkowej na jej brzeg. W tym rozdziale
dowodzimy, że jeśli ośrodkowa przestrzeń Banacha zawiera izometryczną
kopię przestrzeni c0, to optymalna stała retrakcji w tej przestrzeni nie
przekracza 4(1 +

√
2)2. W szczególności, otrzymujemy w ten sposób

nową uniwersalną stałą retrakcji w klasie ośrodkowych przestrzeni L1-
predualnych.
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Chapter 3

Isometries between subspaces of
codimension k of the space C([1, ωk])

Marek Malec

1. Hyperplanes in the space c

We begin by introducing some necessary notation. Let X and Y be Banach
spaces. Then BX and SX stand for the closed unit ball of X and the unit
sphere of X, respectively. If A ⊂ X, then extA is the set of all extreme
points of A. By X = Y we mean that X is isometrically isomorphic to Y .
The dual ofX is denoted byX∗ and σ(X∗, X) stands for the weak∗ topology
on X∗ induced by X. If A ⊂ X∗, then by A∗ we mean the σ(X∗, X)-closure
of A and by A′ the set of all σ(X∗, X)-cluster points of A; that is,

A′ =
{
x∗ ∈ X∗ : x∗ ∈ (A \ {x∗})∗

}
.

Let us recall now that c∗ can be identified with ℓ1 via duality map
φ : ℓ1 → c∗ given by the formula

φ(x∗)(x) = x∗(1) lim
j→∞

x(j) +
∞∑
j=1

x∗(j + 1)x(j),
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where x∗ = (x∗(1), x∗(2), . . . ) ∈ ℓ1 and x = (x(1), x(2), . . . ) ∈ c. For any
x∗ ∈ Bℓ1 we define the hyperplane Wx∗ of the space c by

Wx∗ =

x ∈ c : limj→∞x(j) =
∞∑
j=1

x∗(j)x(j)

 .
Hyperplanes Wx∗ were intensively studied over the last 10 years. The re-
search was initialized by E. Casini, E. Miglierina and Ł. Piasecki in [2],
where they determined the basic properties of Wx∗ hyperplanes.

Theorem 1 (E. Casini, E. Miglierina, Ł. Piasecki [2]). Let x∗ ∈ Bℓ1. Then
W ∗x∗ = ℓ1 and the duality is given by the map φ : ℓ1 →W ∗x∗ defined by

φ(y∗)(x) =
∞∑
j=1

y∗(j)x(j),

where y∗ ∈ ℓ1 and x ∈Wx∗. Moreover, if (e∗j )j∈N denotes the standard basis
in ℓ1, then

e∗j
σ(ℓ1,Wx∗ )−−−−−−→
j→∞

x∗.

Remark 2. In [2] authors relied on a different definition which uses kernels
of functionals on c instead of weak∗-limits to identify a particular hyper-
plane. The definitions are equivalent and their relation can be described in
a simple and direct manner:

Wx∗ =Wf = ker f =

x ∈ c : f(1) limj→∞x(j) +
∞∑
j=1

f(j + 1)x(j) = 0

 ,
where

f =
(

1
1 + ∥x∗∥ ,

−x∗(1)
1 + ∥x∗∥ ,

−x∗(2)
1 + ∥x∗∥ , . . .

)
∈ Sc∗ .

For a suitable vector x∗ ∈ Bℓ1 , the hyperplane Wx∗ can be isometric to
the space c itself or to the space c0 of sequences convergent to 0.

Remark 3 (E. Casini, E. Miglierina, Ł. Piasecki [2]). Let x∗ ∈ Bℓ1 . Then

� Wx∗ = c if and only if |x∗(j)| = 1 for some j ∈ N,
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� Wx∗ = c0 if and only if x∗ = (0, 0, . . . ).

Now, we get to the point.

Theorem 4 (E. Casini, E. Miglierina, Ł. Piasecki [2]). Let X be an ℓ1-

predual such that e∗j
σ(ℓ1,X)−−−−−→
j→∞

x∗. Then X =Wx∗.

A somewhat different variant of this result was provided 3 years later
by the last author.

Theorem 5 (Ł. Piasecki [3]). Let X be an ℓ1-predual for which (extBℓ1)
′ =

{±x∗}; that is, (extBℓ1)′ is either a singleton or consists of two elements.
Then there exists y∗ ∈ Bℓ1 such that X =Wy∗.

In other words, if (extBℓ1)
′ = {±x∗}, a hyperplane is (up-to-isometry)

uniquely determined by the choice of x∗ ∈ Bℓ1 . The question arises, what
happens when there are more weak∗-cluster points; for instance, (extBℓ1)

′ =
{±x∗1,±x∗2}?

2. Subspaces of codimension k in C([1, ωk])

As uncovered by E. Casini, M. Miglierina and Ł. Piasecki [1], all ℓ1-preduals
X such that the ℓ1 standard basis has a finite amount of σ(ℓ1, X)-cluster
points are located among subspaces of the spaces C([1, ωk]) of codimension
k, where C([1, ωk]) is the space of continuous functions on the ordinal inter-
val [1, ωk] equipped with the order topology and ω denotes the first infinite
ordinal. In order to accurately quote the said result, we need to introduce
appropriate notation. For every k ∈ N we put

Ωk0 = [1, ωk] \ {ω, ω2, . . . , ωk}.

From now on, we identify ordinals ω(i − 1) + j with (i, j) and ordinals
ωi with (i, 0) for i, j ∈ N. We also note that the ordinal interval [1, ω) is
homeomorphic to the set of natural numbers N endowed with the discrete
topology. For that reason, we can use ordinals 1 ¬ n < ω interchangeably
with n ∈ N.
It is well known that the dual of the space C([1, ωk]) is isometric to

ℓ1([1, ωk]) and the duality is given by the linear map φ : ℓ1([1, ωk]) →
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C([1, ωk])∗ defined by

φ (y∗) (f) =
k∑
i=1

 ∞∑
j=1

f(i, j)y∗(i, j)

+ k∑
i=1

f(i, 0)y∗(i, 0)

for every y∗ ∈ ℓ1([1, ωk]) and every f ∈ C([1, ωk]).
The standard basis of ℓ1([1, ωk]) is denoted by (e∗i,j), so for f ∈ C([1, ωk])

e∗i,j(f) = f(i, j),

where i = 1, . . . , k and j ∈ N ∪ {0}. Therefore, an element y∗ ∈ ℓ1([1, ωk])
can be written as

y∗ =
k∑
i=1

 ∞∑
j=0

y∗(i, j)e∗i,j


and, similarly, each vector z∗ ∈ ℓ1(Ωk0) can be written as

z∗ =
k∑
i=1

 ∞∑
j=1

z∗(i, j)e∗i,j

 .
For arbitrarily chosen elements x∗1, . . . , x

∗
k ∈ Bℓ1(Ωk0), we define the sub-

space Wx∗1,...,x∗k of C([1, ωk]) as

Wx∗1,...,x∗k =

f ∈ C([1, ωk]) : ∀
s = 1, . . . , k

f(s, 0) =
k∑
i=1

 ∞∑
j=1

f(i, j)x∗s(i, j)

 .
Remark 6. In the special case when k = 1, we obviously get the already
reviewed class of ℓ1-predual hyperplanes in c.

We can recall the aforesaid results now.

Theorem 7 (E. Casini, E. Miglierina, Ł. Piasecki [1]). The dual of the
space Wx∗1,...,x∗k is isometric to ℓ1 (more explicitly, to ℓ1(Ω

k
0)) and the duality

is given by the linear map φ : ℓ1(Ωk0)→W ∗x∗1,...,x∗k
defined by

φ(z∗)(f) =
k∑
i=1

 ∞∑
j=1

f(i, j)z∗(i, j)


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for every z∗ ∈ ℓ1(Ωk0) and every f ∈Wx∗1,...,x∗k . Moreover, for s = 1, . . . , k,

e∗s,j
σ(ℓ1(Ωk0),Wx∗1,...,x

∗
k
)

−−−−−−−−−−−−→
j→∞

x∗s.

Theorem 8 (E. Casini, E. Miglierina, Ł. Piasecki [1]). Let X be a Banach
space such that X∗ = ℓ1(Ωk0) and it holds that

e∗s,j
σ(ℓ1(Ωk0),X)−−−−−−−→
j→∞

x∗s

for each s = 1, . . . , k. Then X =Wx∗1,...,x∗k .

Corollary 9 (E. Casini, E. Miglierina, Ł. Piasecki [1]). Let x∗1, . . . , x
∗
k ∈ Bℓ1.

Then there exists a closed subspace W of C([1, ωk]) of codimension k such
that

(a) W ∗ = ℓ1,

(b) x∗1, . . . , x
∗
k are the σ(ℓ1,W )-cluster points of the ℓ1 standard basis.

We also recall a well-known fact that if T : ℓ1 → ℓ1 is an isometric
isomorphism, then it takes the form

T (e∗j ) = ε(j)e
∗
π(j),

where (e∗j )j∈N is the ℓ1 standard basis, ε : N → {−1, 1} and π : N → N is
a permutation.

In [1] the authors presented the following example.

Example 10 (E. Casini, E. Miglierina, Ł. Piasecki [1]). Take x∗1, x
∗
2 ∈

Bℓ1(Ω20)
defined by

x∗1(i, j) =


1
22j−1 for i = 1 and j ∈ N

1
22j for i = 2 and j ∈ N

and x∗2(i, j) = 0 for i = 1, 2 and j ∈ N. Then

Wx∗1,x∗2 =

f ∈ C([1, ω2]) : f(1, 0) =
∞∑
j=1

f(1, j)
22j−1

+
∞∑
j=1

f(2, j)
22j

, f(2, 0) = 0

 .
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By Theorem 7 we have Wx∗1,x∗2 = ℓ1(Ω
2
0) and

e∗1,j
σ(ℓ1(Ω20),Wx∗1,x

∗
2
)

−−−−−−−−−−−→
j→∞

x∗1 =
(
1
2
,
1
8
,
1
32
, . . . ;

1
4
,
1
16
,
1
64
, . . .

)
,

e∗2,j
σ(ℓ1(Ω20),Wx∗1,x

∗
2
)

−−−−−−−−−−−→
j→∞

x∗2 = (0, 0, 0, . . . ; 0, 0, 0, . . . ) .

On the other hand, we get

Wx∗2,x∗1 =

f ∈ C([1, ω2]) : f(1, 0) = 0, f(2, 0) =
∞∑
j=1

f(1, j)
22j−1

+
∞∑
j=1

f(2, j)
22j

 ,
e∗1,j

σ(ℓ1(Ω20),Wx∗2,x
∗
1
)

−−−−−−−−−−−→
j→∞

x∗2 = (0, 0, 0, . . . ; 0, 0, 0, . . . ) ,

e∗2,j
σ(ℓ1(Ω20),Wx∗2,x

∗
1
)

−−−−−−−−−−−→
j→∞

x∗1 =
(
1
2
,
1
8
,
1
32
, . . . ;

1
4
,
1
16
,
1
64
, . . .

)
.

Clearly, (
extBW ∗

x∗1,x
∗
2

)′
=
(
extBW ∗

x∗2,x
∗
1

)′
.

But is it true that Wx∗1,x∗2 = Wx∗2,x∗1? Suppose that T : Wx∗1,x∗2 → Wx∗2,x∗1
is an isometric isomorphism. Then its adjoint T ∗ is a weak∗-continuous
isometry from W ∗x∗2,x∗1

= ℓ1(Ω20) onto W
∗
x∗1,x

∗
2
= ℓ1(Ω20). By weak

∗-continuity
we obtain

T ∗(e∗2,j)
σ(ℓ1(Ω20),Wx∗1,x

∗
2
)

−−−−−−−−−−−→
j→∞

T ∗(x∗1),

and since T ∗ is an isometry, we must have T ∗(x∗1) = ±x∗1. W.L.O.G. we may
assume that T ∗(x∗1) = x

∗
1. But this means that

T ∗(e∗2,j) = e
∗
2,j

σ(ℓ1(Ω20),Wx∗1,x
∗
2
)

−−−−−−−−−−−→
j→∞

x∗2,

which is a contradiction.

Consequently, the set (extBℓ1)
′ itself does not give us enough informa-

tion to identify a specific ℓ1-predual. As we will see in the next example,
there is even more to that.

Example 11. Let X be an ℓ1-predual such that (extBℓ1)
′ = {±x∗1,±x∗2},
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where x∗1 =
(
1
2 ,
1
4 ,
1
8 , . . .

)
and x∗2 = (0, 0, . . . ). Consider the following rear-

rangements of x∗1 into ℓ1(Ω
2
0):

y∗1 =
(
1
2
,
1
8
,
1
32
,
1
128

, . . . ;
1
4
,
1
16
,
1
64
,
1
256

, . . .

)
,

y∗2 =
(
1
2
,
1
4
,
1
8
,
1
32
,
1
64
,
1
128

, . . . ;
1
16
,
1
256

, . . .

)
, . . . ,

y∗n =
(
1
2
,
1
4
, . . . ,

1
22n−1

,
1
22n+1

,
1
22n+2

, . . . ;
1
22n

,
1
22·2n

,
1
23·2n

, . . .

)
, . . .

Namely, in each step we remove odd terms of the sequence (y∗n(2, j))j∈N
and insert them into the sequence (y∗n+1(1, j))j∈N. Every rearrangement of
x∗2 is denoted as y

∗ = (0, 0, . . . ; 0, 0, . . . ). These rearrangements correspond
to isometries from ℓ1 onto ℓ1(Ω20), and each of them determines which sub-
sequence of extBℓ1 is σ(ℓ1, X)-convergent to a given element of (extBℓ1)

′

with regard to the definition of Wx∗1,...,x∗k spaces.
Analogically as in Example 10, assume that T ∗ : W ∗y∗2 ,y∗ → W ∗y∗1 ,y∗

is
a weak∗-continuous isometric isomorphism. W.L.O.G. we get

T ∗(e∗1,j)
σ(ℓ1(Ω20),Wy∗1 ,y

∗ )
−−−−−−−−−−−→

j→∞
T ∗(y∗2) = y

∗
1.

Thus,

T ∗(e∗1,3j−1) = e
∗
2,2j−1

σ(ℓ1(Ω20),Wy∗1 ,y
∗ )

−−−−−−−−−−−→
j→∞

y∗,

another contradiction. By conducting the same reasoning for other n ∈ N,
we conclude that

(
Wy∗n,y∗

)
n∈N is a sequence of pairwise non-isometric spaces

such that x∗1, x
∗
2 are the σ(ℓ1,Wy∗n,y∗)-cluster points of the ℓ1 standard basis

for each n ∈ N.

As we can see, the environment is much more rich when the ℓ1 standard
basis is not convergent. Already when k = 2, we have infinite possibilities.
Therefore, to precisely identify the structure of an ℓ1-predual we not only
need the set of weak∗-cluster points of the ℓ1 standard basis, but we also
need to know which subsequence of the basis is weak∗-convergent to a given
cluster point.
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Summary

We look into the class of spaces of codimension k of spaces C([1, ωk]), which
serves as an isometric model repository for all ℓ1-preduals X such that the
standard basis in ℓ1 has a finite amount of weak∗-cluster points. In the
profoundly studied case of k = 1, the set (extBℓ1)

′ of weak∗-cluster points
of the extreme points of the closed unit ball of ℓ1 is enough to uniquely
determine a specific ℓ1-predual. However, this is no longer true once k ­ 2.
Indeed, already when k = 2, there may be infinitely many non-isometric
ℓ1-preduals, sharing the same set (extBℓ1)

′.
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Streszczenie

Badamy klasę podprzestrzeni kowymiaru k przestrzeni C([1, ωk]), która
służy jako repozytorium izometrycznych modeli dla wszystkich przestrzeni
ℓ1-predualnych X, dla których standardowa baza w ℓ1 ma skończoną ilość
słabych∗-punktów skupienia. W dogłębnie przestudiowanym przypadku
k = 1, zbiór (extBℓ1)

′ słabych∗-punktów skupienia punktów ekstremalnych
domkniętej kuli jednostkowej w ℓ1 wystarcza do jednoznacznego określenia
konkretnej przestrzeni ℓ1-predualnej. Jednakże, nie jest to już prawdą gdy
k ­ 2. W istocie, już gdy k = 2, może być nieskończenie wiele nieizome-
trycznych przestrzeni ℓ1-predualnych, dzielących ten sam zbiór (extBℓ1)

′.
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Chapter 4

On a certain renorming of l2

Bożena Piątek

1. Introduction

Let (M,d) be a complete metric space and T : M → M . Clearly, T is lips-
chitzian if there is a k > 0 such that

d(Tx, Ty) ¬ k · d(x, y)

and x̄ is called a fixed point if x̄ = T (x̄).
The best-known result concerning the existence of fixed points is the Ba-

nach contraction principle, which says that each contraction, i.e. a Lipschitz
mapping with k < 1, has exactly one fixed point.
An entirely different situation occurs if k is equal to 1. Then, we say that

T is nonexpansive and the existence of fixed points cannot be guaranteed
if M is a closed convex subset of a Banach (or Hilbert) space (see [12]).
Furthermore, the more restrictive conditions imposed on a set, such as weak
compactness, do not have to improve the result in the case of Banach spaces
(research background can be found in [9]). The same can happen if the norm
in a Hilbert space is changed. One of the best-know questions in this field
is the following:



Bożena Piątek

Question 1. Let ∥ · ∥ be a norm in l2 equivalent to ∥ · ∥2, i.e. there are
a, b > 0 such that

a · ∥x∥2 ¬ ∥x∥ ¬ b · ∥x∥2, x ∈ l2.

Does each nonexpansive self-mapping T of a closed bounded convex set have
a fixed point?

If a Banach space has the property discussed in the question, we say that
the space has the fixed point property. Obviously, in a closed bounded con-
vex subset of a Banach space a nonexpansive self-mapping T has an approx-
imate fixed point sequence, i.e. a sequence (xn) for which ∥xn−T (xn)∥ → 0.
The main goal of this chapter is to investigate the existence of fixed

points in a certain renorming of l2, which does not satisfy any of the well-
known conditions guaranteeing the fixed point property.

2. Background of l2 renormings

As usually, l2 denotes the Hilbert space of square-summable sequences with
the natural basis en = (0, . . . , 0, 1

n
, 0, . . . ). In 2021, G. Dutta and P. Veera-

mani introduced the following renorming of l2:

Xq = (l2, | · |) and |x| := max{∥x∥2, q(x)},

where

q(x) = β sup
{ |x(1) + . . .+ x(n)|

an

}
and (an) is a sequence of nonzero numbers. In particular, they asked whether
the space Xq has the fixed point property for an = n. The present author’s
affirmative answer to this question can be found in [11]. Moreover, in the
same paper, it was shown that the nonexpansive self-mappings also have
fixed points under a much weaker assumption that an = O(

√
n). Note that

the condition an = O(
√
n) is necessary because it guarantees that the norm

in Xq is equivalent to the norm ∥ · ∥2 (see [11, Lemma 2.1]).
However, the proof of the existence of fixed points for nonexpansive self-

mappings is not direct. It is based on the fact that the space Xq satisfies the
WORTH property. Let us recall that a Banach space X has the WORTH
property if

lim
n
|∥xn + x∥ − ∥xn − x∥| = 0
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for all weakly null sequences (xn) and x ∈ X (see [3, 13]).
The fact that Xq has the WORTH property follows from the following

lemma (see [11, Lemma 4.2]):

Lemma 2. (Piątek) For each x and (xn) such that xn
w→ 0 the following

equality holds:

lim
n
q(x+ xn) = max

{
q(x), lim

n
q(xn)

}
as long as both limits exist.

Note that the same lemma can be applied to show that the space Xq
also satisfies some more conditions that we will recall in the sequel.
In [5], J. Garcia-Falset introduced a coefficient R(X) in the following

way
R(X) = sup{lim inf

n
∥x+ xn∥},

where the supremum is taken over all weakly null sequences in BX and over
all vectors x ∈ BX .
In the same paper, it was proved that a reflexive Banach space X has the

fixed point property provided the space satisfies the weak Opial condition
and R(X) < 2. In [6], the same author showed that the Opial property is
not necessary to obtain the fixed point result for a reflexive Banach space
X for which R(X) < 2.
In [1], the coefficient R(X) was generalized to M(X). Namely, let

R(a,X) = sup{lim inf
n
∥x+ xn∥}

and now the supremum is taken over all x ∈ X with ∥x∥ ¬ a and all weakly
null sequences with D[(xn)] ¬ 1. Recall that

D[(xn)] = lim sup
n

(
lim sup
m
∥xn − xm∥

)
as long as the sequence (xn) is bounded. Then,

M(X) = sup
{
1 + a
R(a,X)

: a ­ 0
}
.

And a reflexive Banach space has the fixed point property providedM(X) > 1
(see [1, Theorem 2.2]).
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Let us recall that the space l2,1 is defined as l2 with the norm given by

∥x∥ = ∥x+∥2 + ∥x−∥2,

where x+(n) = max{x(n), 0} and x−(n) = max{−x(n), 0}. Hence, the co-
efficient R(l2,1) = 2, but M(l2,1) ­

√
2 (see [1, Remark 2]).

Now, we will show that

R(Xq) =
√
2 (1)

as long as the sequence (an) is such that an =
√
n. Simultaneously, we can

just assume that an = O(
√
n).

Example 3. Let β > 2 and x be an arbitrary element of the unit ball. Take
any weakly null sequence (xn) such that |xn| ¬ 1, n ∈ N. We will estimate
the norm |x+ xn|. We consider two cases:

Case I. Let |x + xn| = ∥x + xn∥2 for infinitely many n. Due to the
well–known equality for l2 space,

lim sup
n
∥x+ xn∥22 = ∥x∥22 + lim sup

n
∥xn∥22 ¬ 2.

Case II. If |x + xn| = q(x + xn) for infinitely many n, then there is
a sequence of natural numbers (k(n)) for which lim supn q(x + xn) =
limn q(x+xk(n)). Moreover, for each subsequence (xl(n)) of (xk(n)) such
that the limit limn q(xl(n)) exists, the following inequality holds:

lim
n
q(x+ xl(n)) = max

{
q(x), lim

n
q(xl(n))

}
¬ 1.

Finally, we get lim supn |x+ xn| ¬
√
2, which completes the proof of (1).

Next, we focus on the renorming introduced in [8] (also see [4, 7]) by
E. Llorens Fuster and A. Jimenez Melado. This result is worth emphasising
as the space does not satisfy any of the best-known properties that guarantee
the fixed point property. Let X = (l2, ∥ · ∥) with

∥x∥ := max
{
1
3
∥x∥2,S(x),M(x)

}
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and

S(x) = sup
n­2
|x(1) + x(n) + x(n+ 1) + x(n+ 2)|,

M(x) = sup
i,j∈N
|x(2i− 1)|+ |x(2j)|.

The proof of the fact that M(X) = 1 can be deduced from the more
general result. Namely, the space does not satisfy a more general condition,
the Prus-Szczepanik property (see [8], where the reader can find a much
longer list of the well–known properties that, on the one hand, guarantee
the existence of a fixed point, but, at the same time, do not hold in the
space X).
However, in the same paper the authors proposed a method that allows

us to show that each nonexpansive self-mapping T has a fixed point. For
the reader’s convenience, let us introduce the main idea of the proof. Let
p : X → R be a semi-norm and assume that there is k ∈ N such that for all
x1, . . . , xk in l2 with pairwise disjoint supports, we have

p(z) ¬ max{p(z − x1), . . . , p(z − xk)}, z ∈ l2. (2)

If T : C → C is a nonexpansive self-mapping of a weakly-compact and
convex subset C of the space (l2, ∥ · ∥), where ∥x∥ = max{∥x∥2, p(x)} and
p satisfies the aforementioned condition, then the minimal weakly compact
convex and T -invariant set K ⊂ C must be a singleton. Clearly, in the case
of the semi-norm p(x) = max{S(x),M(x)}, the condition holds. Note that
this idea can also be applied, for instance, to show the existence of fixed
points in the case of James’ or van Dulst’s renorming of l2. Unfortunately,
although the norm of the space Xq can be described as a maximum of the
norm of l2 and the semi-norm q, it does not satisfy the condition (2) –
see [2, Theorem 31] – as long as the sequence (an) is (strictly) increasing.

3. Main results

The results described in the previous sections motivate us to ask the follow-
ing question:

Question 4. Let us define the norm

|x| = max
{
1
3
∥x∥2,S(x),M(x), q(x)

}
, (3)
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where the sequence (an) is such that an = O(
√
n). Does the space X =

(l2, | · |) have the fixed point property?

The main goal of this chapter is to give an affirmative answer to this
question. Before we proceed to the proof, let us show that our renorming
does not satisfy some of the aforementioned conditions. First, we will prove
that the space X does not satisfy the WORTH property. To simplify our
considerations, we assume that an =

√
n in a similar way as it was done

in [11].

Example 5. Let us choose x =
1
β
e1 and xn = e2M+2n−1, where M is so

large that a2M+k > 2β for k > 0, where β > 2. Hence, we get

∥x± xn∥22 = 1 + 1/β2.

Similarly,
q(x± xn) =M(x± xn) = 1.

And finally,

S(x+ xn) = 1 +
1
β
, but S(x− xn) = 1.

These lead to

|x+ xn| =
β + 1
β

>

√
β2 + 1
β

= |x− xn|

for all natural n and the space X does not have the WORTH property.

Now, we will see that R(X) = 2 while M(X) = 1:

Example 6. Let us choose an odd number N such that an > β for all
n ­ N and let x = eN . We take xm = eN+4m−1 as a weakly null sequence.
Therefore, |x| = M(x) = 1 and |xm| = M(xm) = 1 for all natural m.
Simultaneously,

M(x+ xm) = 2, m ∈ N,

from which it follows that R(X) = 2 and the fixed point property cannot be
deduced from the aforementioned result of Garcia Falset. In the same way,
one can show that the coefficient M(X) is equal to 1.
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Our next step is to show the fixed point property of X. To do this,
we apply the ultra-power method. Let Y be a Banach space and let [Y ]
denote the quotient space l∞(Y )/c0(Y ) endowed with the quotient norm
∥[yn]∥ = lim sup

n
∥yn∥, where [yn] denotes the equivalent class of a sequence

(yn) in l∞(Y ). Then, identifying each point x ∈ Y with the equivalent class
of the sequence (x, x, . . .), we can treat Y as a subset of [Y ]. In the same
way, for eachM ⊂ Y we denote the set {[yn] : yn ∈M, n ∈ N} by [M ]. IfM
is a weakly compact and convex subset of Y , then [M ] is a closed bounded
and convex subset of [Y ]. Furthermore, for any bounded mapping T one
can consider [T ] given by [T ]([yn]) = [T (yn)] and for each approximate fixed
point sequence (zn) the element [zn] is a fixed point of [T ]. The following
lemma due to Lin is an ultra-power counterpart of the well-known Goebel–
Karlovitz result (see [6, 10]):

Lemma 7. (Lin): Let K be a minimal weakly compact convex subset for
a nonexpansive mapping T . If [W ] is any nonempty closed convex subset
of [K] which is invariant under [T ], then sup{∥[wn] − x∥ : [wn] ∈ [W ]} =
diam (K) for every x ∈ K.

The aforementioned lemma will be a key tool in the proof of our main
theorem:

Theorem 8. The space X = (l2, | · |) with the norm given by (3) has the
fixed point property.

Proof. Let C be a weakly compact and convex subset of l2 and T : C → C
be a nonexpansive mapping. According to the Zorn’s lemma, the set C
contains a weakly compact and convex subset K, which is minimal with
respect to T . That means T (K) ⊂ K and no strictly smaller weakly com-
pact and convex subset of K is T -invariant, which yields c̄oT (K) = K. If
diam (K) = 0, then K is a singleton and it contains a fixed point. Other-
wise, we assume diam (K) > 0. Without loss of generality, we may assume
that diam (K) = 1 and, moreover, there exists a weakly null approximate
fixed point sequence (xn) in K.
Therefore, there is a subsequence (xk(n)) and a sequence (yn) in l2 for

which

1. supp yi ∩ supp yj = ∅ if i ̸= j;

2. lim supn ∥xk(n) − yn∥ = 0.
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Condition 2 guarantees that [yn] = [xk(n)] ∈ [K], where [K] is the set
described in the preceding part of the section.
In the following, we define zin = y3n+i, i = 1, 2, 3.
Let us define

[W ] :=
{
[un] ∈ [K] : |[zin]− [un]| ¬

3
4
, i = 1, 2, 3; D([un]) ¬

3
4

}
.

The set [W ] is not empty, because it contains [vn], when vn =
z1n + z

2
n + z

3
n

4
.

Moreover, the set is closed, convex and [T ]-invariant.
Let us take any [un] ∈ [W ] and consider the following three estimates:

1. Since Condition 1 guarantees that z1n, z
2
n, z

3
n have pairwise disjoint

supports, we get

3∑
i=1

∥zin − un∥22 = 2∥un∥22 + ∥un − (z1n + z2n + z3n)∥22.

Hence,

2∥un∥22 ¬
3∑
i=1

∥zin − un∥22 ¬
3∑
i=1

(
3 · |zin − un|

)2
,

which leads to

lim sup ∥un∥2 ¬
√
27
2
·
(
3
4

)2
=
9
√
6
8
.

2. The semi-norm p(z) = max{M(z),S(z)} satisfies the condition (2),
so,

lim sup
n

p(un) ¬ lim sup
n
max{p(z1n − un), p(z2n − un), p(z3n − un)}

¬ max
i∈{1,2,3}

(lim sup
n

p(zin − un)}

¬ max
i∈{1,2,3}

lim sup
n
|zin − un| ¬

3
4
.

3. For the semi-norm q we begin with similar patterns as in Case II
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of Example 3. Indeed, let (ul(n)) be such a subsequence of (un) that

lim sup
n

q(un) = lim
n
q(ul(n)) = max{q(u), lim q(ul(n) − u)}

and (ul(n)) is weakly convergent to u. From the weak lower semicon-
tinuity of the norm it follows that

lim
n
q(ul(n) − u) ¬ lim sup

n
|ul(n) − u|

¬ lim sup
n
(lim sup
m
|ul(n) − ul(m)|)

= D[(ul(n))] ¬ D[(un)] ¬
3
4
.

Simultaneously, the sequence (ul(n)−z1n) converges weakly to u. There-
fore,

q(u) ¬ |u− 0| ¬ lim sup
n
|ul(n) − z1l(n)| ¬

3
4
.

These inequalities lead to the following estimation:

lim sup
n

q(un) ¬
3
4
.

Note that the proofs of the first two cases go with the same patterns as
in [8].
Finally, we get

|[un]| = lim sup
n
|un| = lim sup

n
max

{
1
3
∥un∥2, p(un), q(un)

}
¬ max

{
lim sup
n

1
3
∥un∥2, lim sup

n
p(un), lim sup

n
q(un)

}
¬ max

{
1
3
· 9
√
6
8
,
3
4
,
3
4

}
=
3
√
6
8

< 1.

Since [un] was arbitrarily chosen, this fact contradicts Lemma 7.
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Summary

Motivated by [A. Jimenez Melado, E. Llorens-Fuster, A class of renormings
of l2 with the fixed point property, J. Nonlinear Convex Anal. 14 (2013),
no. 2, 351-362] and [G. Dutta, P. Veeramani, A short survey on open prob-
lems in metric fixed point theory and some related results for nonexpansive
mappings, J. Anal. 29 (2021), 369-381], in [B. Piątek, On some renormings
of l2, J. Math. Anal. Appl. 547 (2) (2025), Article ID 129383 9 pages], we
asked whether a certain renorming of l2 has the fixed point property. The
main goal of this chapter is to give an affirmative answer to this question.
Moreover, we analyze whether our space satisfies some conditions, which
guarantee the existence of fixed points.
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Streszczenie

Zainspirowani pracami [A. Jimenez Melado, E. Llorens-Fuster, A class of
renormings of l2 with the fixed point property, J. Nonlinear Convex Anal. 14
(2013), no. 2, 351-362] oraz [G. Dutta, P. Veeramani, A short survey on open
problems in metric fixed point theory and some related results for nonexpan-
sive mappings, J. Anal. 29 (2021), 369-381], w artykule [B. Piątek, On some
renormings of l2, J. Math. Anal. Appl. 547 (2) (2025), Article ID 129383
9 pages] postawiliśmy pytanie, czy pewne przenormowanie przestrzeni l2
ma własność punktu stałego. Głównym celem tego rozdziału jest udziele-
nie pozytywnej odpowiedzi na to pytanie. Ponadto analizujemy, czy nasza
przestrzeń spełnia pewne warunki gwarantujące istnienie punktów stałych.
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Chapter 5

Selected geometric properties of
interpolation spaces

Joanna Markowicz

1. Preliminaries

The theory of interpolation spaces is a branch of functional analysis with
many applications in other areas of analysis such as theory of differential
partial equations, theory of approximation and numerical analysis. The pa-
per is dedicated to an abstract discrete method of interpolation and to
selected geometric properties of interpolation spaces constructed with the
method. In [5] the discrete method of interpolation was used to find the
factorization of weakly compact operators through reflexive spaces. Using
that method, Davis [4] proved that every uniformly convex space with an
unconditional base is isomorphic to a complementing subspace of a uni-
formly convex space with a symmetric base (see also theorem 3.b.2 w [13]).
In the paper, we use a general discrete method of interpolation which for
a given interpolation coupleX = (X0, X1) of Banach spaces and for a space
E with an unconditional base with an unconditional constant equals 1 leads
to a construction of an interpolation space Kp,θ(X, E).

Definition 1. Let X0 and X1 be Banach spaces. The couple X = (X0, X1)
is called an interpolation couple if both spaces X0 and X1 and linearly and
continuously embedded in a linear and topological space V .
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LetX = (X0, X1) be an interpolation space. The sum X0+X1 is defined
as the space X0 +X1 = {x ∈ V : x = x0 + x1, x0 ∈ X0, x1 ∈ X1} with the
norm

∥x∥X0+X1 = inf{∥x0∥X0 + ∥x1∥X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}. (1)

The intersection X0 ∩X1 is considered with the norm

∥x∥X0∩X1 = max{∥x∥X0 , ∥x∥X1}.

Both X0 +X1 and X0 ∩X1 are Banach spaces.
For a given interpolation couple X = (X0, X1) we have a k-functional

k(t, x,X) defined for all x ∈ X0 +X1 and for all t > 0 in the following way

k(t, x,X) = inf{∥x0∥X0 + t∥x1∥X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.

This functional was introduced by J. Peetre. For all x ∈ X0+X1 the function
k(·, x,X) is concave and for every given t > 0, the k-functional k(t, ·,X) is
a norm in the space X0 +X1 which is equivalent to (1). It follows from the
following inequalities

min(1, t)∥x∥X0+X1 ¬ k(t, x,X) ¬ max(1, t)∥x∥X0+X1

for all t > 0 and for all x ∈ X0 +X1.
We shall consider the space X0 +X1 with the norm

∥x∥p = kp(x, a, b) = inf
{(
ap∥x0∥pX0 + b

p∥x1∥pX1
) 1
p

}
, (2)

where x = x0 + x1, x0 ∈ X0, x1 ∈ X1 and p ∈ [1,∞) with a, b > 0. It is
obvious that the norm is equivalent to the norm given in the formula (1).
We denote the space X0 +X1 with the norm (2) by Σp(X, a, b).
The generalization of the definition of the functional k(t, x,X) was con-

sidered for instance in [12] and [14, p. 220].

Definition 2. We say that an interpolation couple X = (X0, X1) is p-
exact if the infimum in (2) is attained, i.e. for every x ∈ X0+X1 there exist
x0 ∈ X0 and x1 ∈ X1 such that

∥x∥p =
(
ap∥x0∥pX0 + b

p∥x1∥pX1
) 1
p . (3)
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Let us assume that τ is an admissible topology in Σp(X, a, b). We say
that an interpolation couple X = (X0, X1) is τ -closed if unit balls of the
spaces X0 and X1 are continuously τ -closed in Σp(X, a, b) and if at least
one of them is continuously τ -compact. The following proposition gives con-
ditions for an interpolation couple X to be p-exact.

Proposition 3. Let X = (X0, X1) be an interpolation couple and let p ∈
[1,∞). If X is τ -closed or both spaces X0, X1 are reflexive, then the couple
X is p-exact.

We shall use the interpolation method that is based on spaces with
unconditional bases. Moreover, we shall consider bases for which the set of
indices is the set of integers.
Let p ∈ [1,∞) and let X = (X0, X1) be an interpolation space. Let E

be a Banach space with a normalized, unconditional basis (ei)i∈Z whose the
unconditional constant equals 1. Let us assume that (ai)i∈Z and (bi)i∈Z are
sequences of positive numbers for which

∑
i∈Zmin{ai, bi} <∞.

Definition 4. The interpolation space Kp(X, E, (ai), (bi)) is defined as
a space of all elements x ∈ X0+X1 such that the series

∑
i∈Z kp (x, ai, bi) ei

converges in E. The space Kp(X, E, (ai), (bi)) is considered with the norm

∥x∥ =
∥∥∥∥∥∥
∑
i∈Z

kp(x, ai, bi)ei

∥∥∥∥∥∥
E

. (4)

For the norm (4) there exists also the following formula

∥x∥ = inf
∥∥∥∥∥∥
∑
i∈Z

(
api ∥x0(i)∥pX0 + b

p
i ∥x1(i)∥pX1

) 1
p ei

∥∥∥∥∥∥
E

, (5)

where the infimum is taken over all decompositions x = x0(i)+ x1(i) where
x0(i) ∈ X0, x1(i) ∈ X1 for every i ∈ Z such that the series

∑
i∈Z

(
api ∥x0(i)∥pX0 + b

p
i ∥x1(i)∥pX1

) 1
p ei

converges in E.
The space Kp(X, E, (ai), (bi)) with the norm given by the formula (4) is

a Banach space. Indeed, the spaces Σp(X, a, b) are Banach spaces and the
interpolation space Kp(X, E, (ai), (bi)) is a direct sum of those spaces.
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We have
2−
1
q min{a1, b1}∥x∥X0+X1 ¬ ∥x∥

for every x ∈ Kp(X, E, (ai), (bi)) where 1q + 1p = 1. Moreover,

∥x∥ ¬
∑
i∈Z
min{ai, bi}∥x∥X0∩X1

for every x ∈ X0∩X1. The inequalities show that the following embeddings

X0 ∩X1 ⊂ Kp(X, E, (ai), (bi)) ⊂ X0 +X1

are continuous.
The name interpolaton space for the space Kp(X, E, (ai), (bi)) comes

from the theorem of interpolation of operators.

Theorem 5. [14, p. 219] Let X = (X0, X1) and Y = (Y0, Y1) be two
interpolation couples and let T : X0 +X1 → Y0 + Y1 be a linear map acting
from X0 to Y0 as a bounded operator with the norm ∥T∥0 and from X1 to Y1
as a bounded operator with the norm ∥T∥1. Then the operator T maps the
space Kp(X, E, {ai}, {bi}) in the space Kp(Y , E, {ai}, {bi}) and its norm
on those space is less or equal to max{∥T∥0, ∥T∥1}.

In the special case when ai = eθi and bi = e(θ−1)i for every i ∈ Z where
θ ∈ (0, 1), we denote the interpolation space Kp(X, E, (eθi), (e(θ−1)i)) by
Kp,θ(X, E) and its norm given by the formula (4) we denote by ∥·∥p,θ.
We consider bases (ei)i∈Z of E which satisfy an additional assumption:

there exists a constant M > 0 such that∥∥∥∥∥∥
∑
i∈Z

αiei+k

∥∥∥∥∥∥
E

¬M
∥∥∥∥∥∥
∑
i∈Z

aiei

∥∥∥∥∥∥
E

(6)

for every k ∈ Z. In particular, symmetric bases, the standard base of the
space lp(Z) or standard bases of Orlicz sequence spaces and Lorentz sequence
spaces satisfy (6) (see [13], p. 115).
The interpolation space is a special case of a direct sum. The special

property of the norm of the considered interpolation space describes next
proposition. The proof of the result is based on the method of the proof of
the lemma 2.g.13 from [14] and the property itself is very useful in many
other proofs.
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Proposition 6. [18] Let X = (X0, X1) be an interpolation space and let
θ ∈ (0, 1), p ∈ [1,∞). Next, let E be a Banach space with a normalized
unconditional base (ei)i∈Z with the unconditional constant equals 1, which
satisfies (6). Then the inequality

∥x∥p,θ ¬ C
∥∥∥∥∥∥
∑
i∈Z

eθi∥x0(i)∥X0ei

∥∥∥∥∥∥
1−θ

E

∥∥∥∥∥∥
∑
i∈Z

e(θ−1)i∥x1(i)∥X1ei

∥∥∥∥∥∥
θ

E

, (7)

where C =
(
1 + e1−θ

)
M holds for every x ∈ Kp,θ(X, E) and for every

decomposition x = x0(i) + x1(i) where x0(i) ∈ X0, x1(i) ∈ X1, i ∈ Z such
that the series from the right-hand side converge.

Proof. Let x ∈ Kp,θ(X, E) and let x = x0(i) + x1(i) be a decomposition
satisfying the assumptions of the above proposition. Put

A0 =

∥∥∥∥∥∥
∑
i∈Z

eθi∥x0(i)∥X0ei

∥∥∥∥∥∥
E

and A1 =

∥∥∥∥∥∥
∑
i∈Z

e(θ−1)i∥x1(i)∥X1ei

∥∥∥∥∥∥
E

.

Our assumption guarantees that A0, A1 > 0. We can find k ∈ Z such that

ek ¬ A1
A0

< ek+1.

For every i ∈ Z we have the decomposition x = x0(i− k) + x1(i− k). Thus

∥x∥p,θ ¬
∥∥∥∥∥∥
∑
i∈Z

(
eθip∥x0(i− k)∥pX0 + e

(θ−1)ip∥x1(i− k)∥pX1
) 1
p ei

∥∥∥∥∥∥
E

¬
∥∥∥∥∥∥
∑
i∈Z

eθi∥x0(i− k)∥X0ei

∥∥∥∥∥∥
E

+

∥∥∥∥∥∥
∑
i∈Z

e(θ−1)i∥x1(i− k)∥X1ei

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
∑
i∈Z

eθ(i+k)∥x0(i)∥X0ei+k

∥∥∥∥∥∥
E

+

∥∥∥∥∥∥
∑
i∈Z

e(θ−1)(i+k)∥x1(i)∥X1ei+k

∥∥∥∥∥∥
E

¬M(eθkA0 + e(θ−1)kA1) ¬ CA1−θ0 Aθ1.

In some assumptions of theorems of the paper there appears a notion of
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uniform monotonicity. Let us recall its definition.

Definition 7. We say that a Banach lattice X is uniformly monotone if
for every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that if x, y ∈ X, 0 ¬ y ¬ x,
∥x∥ = 1 and ∥y∥ ­ ε, then ∥x− y∥ ¬ 1− δ.

Uniform monotonicity can be described with the help of the following
function called modulus of monotonicity.

Definition 8. The modulus of monotonicity δm,X : [0, 1]→ [0, 1] of a Banach
lattice is defined as

δm,X(ε) = inf{1− ∥x− y∥ : x, y ∈ X, 0 ¬ y ¬ x, ∥x∥ ¬ 1, ∥y∥ ­ ε}. (8)

The lattice X is uniformly monotone if and only if δm,X(ε) > 0 for every
ε > 0.

Example 9. [8] Let 1 ¬ p <∞ and X be the lattice Lp([0, 1]) or lp. Then

δm,X(ε) = 1− (1− εp)
1
p

for every ε ∈ [0, 1]

2. Opial properties in interpolation spaces

Opial property and uniform Opial property were introduced respectively
in [20] and [21]. Both those properties have many applications in metric
fixed point theory (see [16]). Other application was given in [6]. In the
paper we consider Opial properties with respect to a weak topology, as it
was considered originally in literature. In this section we present conditions
for an interpolation couple X = (X0, X1) that guarantee that the sum
Σp(X, a, b) = X0 + X1 has nonstrict Opial property or Opial property.
Next, we give sufficient conditions for an interpolation space Kp,θ(X, E)
to have Opial property. Moreover, we give an estimation of the modulus
connected to uniform Opial property sKp,θ with the help of the modulus of
monotonicity δm,E of the lattice E and moduli sX0 and sX1 of the spaces X0
and X1. Thanks to that estimation we can conclude the conditions under
which an interpolation space Kp,θ(X, E) has uniform Opial property.
By N1(τ) we shall denote a set of all sequences (xn) convergent to 0

with respect to the topology τ for which∥xn∥ ­ 1 for all n. The condition
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N1(τ) = ∅ defines spaces for which sequence convergence with respect to
τ is equivalent to convergent in norm. If τ = w then such property is
called Schur property. All finitely dimensional spaces have Schur property.
Moreover, the space l1 has that property (see [16]).

Definition 10. We say that a Banach space X has nonstrict Opial property
with respect to a topology τ in X if

lim inf
n→∞

∥xn − x∥ ¬ lim inf
n→∞

∥xn∥

for every bounded sequence (xn) such that x = τ - limn→∞ xn w X.

Definition 11. We say that a Banach space X has Opial property with
respect to a topology τ in X if

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn∥

for every bounded sequence (xn) in X such that x = τ - limn→∞ xn in X
where x ̸= 0.

In the above definitions liminf can be replaced by limsup.

Definition 12. We say that a Banach space X has uniform Opial property
with respect to a topology τ in X if for every c > 0 there exists r > 0 such
that the inequality

1 + r ¬ lim inf
n→∞

∥xn + x∥

is satisfied for every bounded sequence (xn) ∈ N1(τ) in X and for every
x ∈ X for which ∥x∥ ­ c.

Uniform Opial property with respect to τ implies Opial property with
respect to τ .
In addition, we assume that spaces for which N1(τ) = ∅ have uniform

Opial property with respect to the topology τ . We have the following ex-
amples.

Example 13.

1. The spaces lp have uniform Opial property for every p ∈ (1,∞).

2. The spaces Lp([0, 1]) for p ∈ (1,∞), p ̸= 2 do not have nonstrict Opial
property with respect to the topology τ = w.
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3. Let Ω be a space with a σ finite measure µ. Then the spaces Lp(Ω) for
p ∈ [1,∞) have uniform Opial property with respect to the topology
locally convergent in measure (see [7]).

Uniform Opial property can be also describe with help of a function sX,τ
defined in the following way.

Definition 14. Let X be a Banach space. The modulus sX,τ is defined as

sX,τ (c) = inf
{
1− lim inf

n→∞
∥xn − x∥

}
,

where c ∈ [0, 1] and infimum is taken over all bounded sequences (xn) in X
such that lim infn→∞ ∥xn∥ ¬ 1 and τ - limn→∞ xn = x where ∥x∥ ­ c.
A space X has uniform Opial property with respect to a topology τ

if and only if sX,τ (c) > 0 for every c ∈ (0, 1]. Furthermore, a space X
have nonstrict Opial property with respect to a topology τ if and only if
sX,τ (c) ­ 0 for every c ∈ [0, 1].
Theorem 15 ( [17]). If X has nonstrict Opial property with respect to
a topology τ and c > 0 then in the definition of sX,τ (c) the condition ∥y∥ ­ c
can be replaced by ∥y∥ = c.
Theorem 16 ([18]). Let p ∈ [1,∞), a, b > 0 and let X = (X0, X1) be an
interpolation couple. Moreover, let Σp(X, a, b) be a space with a norm given
by (3). Furtermore, assume that the spaces X0 and X1 are reflexive.

1) If both spaces X0 and X1 have nonstrict Opial property, then Σp(X, a, b)
has nonstrict Opial property.

2) If both spaces X0 and X1 have Opial property, then Σp(X, a, b) has
Opial property.

The following theorem gives conditions for an interpolation space
Kp,θ(X, E) to have Opial property.

Theorem 17 ([18]). Let E be a real Banach space with a normalized uncon-
ditional base (ei)i∈Z with an unconditional constant equals 1, which satisfies
(6). Let us assume that p ∈ [1,∞), θ ∈ (0, 1) and X = (X0, X1) is an
interpolation couple such that X0 and X1 are reflexive. If E is uniformly
monotone, both spaces X0 and X1 have nonstrict Opial property and at
least one of X0 and X1 have Opial property, then the interpolation space
Kp,θ(X, E) have Opial property.
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Next theorem presents an estimation of the modulus sKp,θ connected
with Opial property in Kp,θ(X, E).

Theorem 18 ([18]). Assume that E is a real Banach space with a normal-
ized unconditional base (ei)i∈Zwith an unconditional constant equals 1, which
satisfies (6). Let us assume that p ∈ [1,∞), θ ∈ (0, 1) and X = (X0, X1) is
an interpolation couple of reflexive Banach spaces that have nonstrict Opial
property. Then

sKp,θ(t) ­ δm,E(max{c0sX0(c0), c1sX1(c1)}), (9)

where

c0 =
1
2

(
t

C

) 1
1−θ

, c1 =
1
2

(
t

C

) 1
θ

(10)

and C is the constant from jest (7). Consequently, if E is uniformly mono-
tone and X0 or X1 have uniform Opial property, then Kp,θ(X, E) has uni-
form Opial property.

3. Uniform convexity in interpolation spaces

Uniform convexity is another classical geometric properties of Banach spaces.
It was introduced by J. A. Clarkson in [2] and states that if two points in
the unit ball are sufficiently far apart, then their midpoint lies well inside
the unit ball. This property can be described with the help of a function
called modulus of convexity.

Definition 19. Let X be a Banach space. We define the modulus of con-
vexity of X as a function δX : [0, 2]→ [0, 1] defined as

δX(ε) = inf
{
1−

∥∥∥∥x+ y2
∥∥∥∥ : x, y ∈ B(X), ∥x− y∥ ­ ε} . (11)

A space X is uniformly convex if δX(ε) > 0 for every ε > 0.

In the above definition of δX , the condition x, y ∈ B(X) can be replaced
by x, y ∈ S(X), and the condition ∥x−y∥ ­ ε can be replaced by ∥x−y∥ = ε
(see [14]).

Example 20 ([11]). The spaces Lp i lp for p ∈ (1,∞) are uniformly convex.
Let X = Lp or X = lp. If p ­ 2, then the modulus of convexity of X is
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given by the formula

δX(ε) = 1−
(
1−

(
ε

2

)p)1/p
.

If 1 < p ¬ 2, then the modulus is given by the implicit formula(
1− δX(ε) +

ε

2

)p
+
∣∣∣∣1− δX(ε)− ε

2

∣∣∣∣p = 2
for every ε ∈ [0, 2].

The main result regarding uniform convexity in interpolation spaces was
proved by Beauzamy in [1] (see also theorem 2.g.21 in [14]). The Beauzamy’s
theorem refers to the real interpolation method introduced by Lions and
Peetre in [15]. The respective theorem for the complex interpolation method
was proved by Cwikel and Reisner in [3].
The observation of uniform convexity in the space Σp(X, a, b) is the

following. The space Σp(X, a, b) can be considered as a quotient space of
the direct sum (Y0⊕Y1)E , where E is the plane R2 with lp-norm and Y0, Y1
are isometric to X0 and X1, respectively. If both X0 and X1 are uniformly
convex, then Σp(X, a, b) is uniformly convex and its modulus of convexity
does not depend on the coefficients a, b. From the fact that the interpolation
space Kp(X, E, (ai), (bi)) is a direct sum of Σp(X, ai, bi) we obtain that
Kp(X, E, (ai), (bi)) is uniformly convex.
Th following theorem about uniform convexity of Kp,θ(X, E) says that

if one of the spaces from the interpolation coupleX = (X0, X1) is uniformly
convex, then the interpolation space Kp,θ(X, E) is also uniformly convex.

Theorem 21 ([19]). Let X = (X0, X1) be an interpolation couple for which
at least one of the spaces X0, X1 is uniformly convex. Furthermore, let
us assume that E is a uniformly convex Banach space with a normalized
unconditional base (ei)i∈Z with an unconditional constant equals 1, which
satisfies (6). Then the space Kp,θ(X, E) is uniformly convex.
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Summary

In theory of interpolation spaces we can put a natural question whether
a given property of a Banach space is saved under passing to an interpola-
tion space. In literature many interpolation methods were examined. The
answer to this problem is determined by the given method of interpola-
tion. In the paper we consider a general discrete and abstract method of
interpolation based of a k-functional to obtain an interpolation space. We
examine Opial properties and uniform convexity in such spaces. Namely, we
give results about non strict Opial property and Opial property in the space
Σp(X, a, b) = X0 +X1 and about Opial property in Kp,θ(X, E). Moreover,
the estimation of the modulus sKp,θ connected to uniform Opial property
for the interpolation space Kp,θ(X, E) is presented. We also give condition
for the interpolation space Kp,θ(X, E) to be uniformly convex.

Streszczenie

W teorii przestrzeni interpolacyjnych naturalnym jest pytanie, czy
dana własność przestrzeni Banacha jest zachowywana przy przejściu do
przestrzeni interpolacyjnej. W literaturze badano wiele metod interpo-
lacji. Odpowiedź na to pytanie zależy od konkretnej metody interpolacji.
W tym rozdziale rozważamy ogólną dyskretną i abstrakcyjną metodę inter-
polacji opartą na k-funkcjonale do konstrukcji przestrzeni interpolacyjnej.
Badamy własności Opiala oraz jednostajną wypukłość w takich przestrzeni-
ach. Przedstawiamy wyniki dotyczące nieostrej własności Opiala oraz włas-
ności Opiala w przestrzeni Σp(X, a, b) = X0+X1, a także własności Opiala
w Kp,θ(X, E). Ponadto, podajemy oszacowanie modułu sKp,θ związanego
z jednostajną własnością Opiala dla przestrzeni interpolacyjnej Kp,θ(X, E).
Przedstawiamy również warunek jednostajnej wypukłości przestrzeni inter-
polacyjnej Kp,θ(X, E).
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Chapter 6

Majorization of derivatives for
Ma-Minda type of convex functions

Agnieszka Wiśniowska-Wajnryb

1. Introduction

Denote by Ur the disk with center at 0 and the radius r in the complex
plane C and by U = U1 the unit disk, that is

Ur = {z ∈ C : |z| < r}, 0 < r ¬ 1.

Let f and F be two functions holomorphic in the disk Ur. We say that
a function f is subordinate to F in Ur and write f ≺ F in Ur, if there exists
a holomorphic function ω such that |ω(z)| ¬ |z| and f(z) = F (ω(z)) for
z ∈ Ur. Hence f ≺ F in U implies f(U) ⊂ F (U). If F is univalent in U then

f ≺ F in U ⇔ [f(0) = F (0) and f(Ur) ⊂ F (Ur) for 0 < r ¬ 1].

We say that a function f is majorized by F in Ur and write f ≪ F in Ur, if
|f(z)| ¬ |F (z)| for every z ∈ Ur. Hence f ≪ F in Ur if there exists a function
ψ holomorphic in Ur such that |ψ(z)| ¬ 1 for z ∈ Ur and f(z) = ψ(z) ·F (z)
for every z ∈ Ur.
Let H denote the class of all holomorphic functions in U and let S
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denote the class of functions F ∈ H that are univalent in U and normalized
by F (0) = F ′(0)− 1 = 0.
M. Biernacki [1] investigated the relation between subordination f ≺ F

in U and majorization of derivatives f ′ ≪ F ′ in some smaller disk Ur0 , if
the functions f, F are univalent in U . This problem was also considered by
G.M. Goluzin [5] p. 330 and Shah Tao-shing [16].
Many authors (see f.e. [2], [3], [4], [8], [10], [13]) investigated the relation

between majorization f ≪ F in U and majorization f ′ ≪ F ′ in some
smaller disk Ur0 if f ∈ H and F ∈ F , where F is a certain subclass of S.
The greatest number r0 = r0(H,F), for which the implication

f ≪ F in U ⇒ f ′ ≪ F ′ in Ur0

holds true for every pair of functions f ∈ H, F ∈ F , is called the radius of
majorization of derivatives.
Z. Lewandowski in [10] (see also T.H. MacGregor [13]) proved that if F

is univalent or starlike in U then

f ≪ F in U ⇒ f ′ ≪ F ′ in U2−
√
3.

T.H. MacGregor [13] (see also Z. Bogucki and J. Zderkiewicz [3]) proved
that if F is convex in U then

f ≪ F in U ⇒ f ′ ≪ F ′ in U1/3.

Thus
r0(H,ST ) = r0(H,S) = 2−

√
3,

r0(H, CV) =
1
3
,

where ST and CV denote the usual classes of starlike and convex functions
in U, respectively.
The problem of majorization of derivatives was generalized by J. Janowski

and J. Stankiewicz [8] in the following way. To determine the smallest num-
ber T (r) = T (r,H,F), r ∈ [0, 1) such that for every pair of functions
f ∈ H, F ∈ F the implication

f ≪ F in U ⇒ |f ′(z)| ¬ T (r) · |F ′(z)|

holds true for |z| = r < 1.
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Some results for this generalized problem were obtained by J. Janowski
and J. Stankiewicz [8] and f. e. by F. Bogowski and Cz. Bucka [2], A. Wiśnio-
wska-Wajnryb [18].
The purpose of the present paper is to find the radius r0(H, CV(ϕ)),

where CV(ϕ) denotes a general class of Ma-Minda convex functions. Here
ϕ is a given holomorphic univalent function such that ϕ(0) = 1, ϕ′(0) > 0
and ϕ(U) is a convex domain symmetric with respect to the real axis and
contained in the right half-plane. The assumption F ∈ CV(ϕ) means that
majorant F satisfies the following condition

1 +
zf ′′(z)
f ′(z)

≺ ϕ(z) in U.

2. Univalent majorants

We start by proving the general theorem which allows us to determine the
radius r0(H,F), if F is any subclass of the class S. We give a unified ap-
proach to solve majorization problems for all subclasses of S which were
investigated before one by one by many authors (see f.e. [2], [3], [4], [7], [8],
[10], [13], [17]). We apply some modification of the method used in [8].
For any subclass F of the class S we define

m = m(r,F) = min
{∣∣∣∣zF ′(z)F (z)

∣∣∣∣ : F ∈ F , |z| = r} .
Theorem 1. Let F ∈ F ⊂ S and let f ∈ H and f(z) = a1z + a2z2 +
. . . , a1 ̸= 0. If f ≪ F in U then f ′ ≪ F ′ in the disk Ur0, where r0 is the
unique root in the interval (0, 1) of the equation

m =
2r
1− r2 .

Proof. Let f ≪ F in U . Then there exists a function ψ ∈ Ω0 such that

f(z) = ψ(z) · F (z) for z ∈ U, (1)

where

Ω0 = {ψ ∈ H : ψ(z) = a0 + a1z + . . . , a0 ̸= 0 and |ψ(z)| ¬ 1 for z ∈ U}.
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Differentiating (1) we get

f ′(z) = ψ′(z) · F (z) + ψ(z) · F ′(z),

hence ∣∣∣∣ f ′(z)F ′(z)

∣∣∣∣ = ∣∣∣∣ψ′(z) F (z)F ′(z)
+ ψ(z)

∣∣∣∣ . (2)

It is known (see [5]) that if ψ ∈ Ω0, then

|ψ′(z)| ¬ 1− |ψ(z)|
2

1− |z|2 for z ∈ U. (3)

Moreover if F ∈ F , then∣∣∣∣zF ′(z)F (z)

∣∣∣∣ ­ m for |z| = r < 1. (4)

Using (3) and (4) we obtain from (2)∣∣∣∣ f ′(z)F ′(z)

∣∣∣∣ ¬ ∣∣∣∣ F (z)F ′(z)

∣∣∣∣ 1− |ψ(z)|21− |z|2 + |ψ(z)| ¬
r

m

1− |ψ(z)|2
1− |z|2 + |ψ(z)|,

hence ∣∣∣∣ f ′(z)F ′(z)

∣∣∣∣ ¬ −r
m(1− r2) |ψ(z)|

2 + |ψ(z)|+ r

m(1− r2) . (5)

For a fixed r the right hand side of (5) is a function P of variable u = |ψ(z)|

P (u) =
−r

m(1− r2)u
2 + u+

r

m(1− r2) , where u ∈ [0, 1].

We have
|f ′(z)| ¬ P (u)|F ′(z)|

and hence f ′ ≪ F ′ in the disk Ur0 , where

r0 = sup
r∈(0,1)

{ max
u∈[0,1]

P (u) ¬ 1}.

The graph of the function P is a parabola with its arms pointing downwards
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and P (1) = 1. Hence

max
u∈[0,1]

P (u) ¬ 1⇔ m(1− r2)
2r

­ 1,

this means when abscissa of the vertex of the parabola is greater than or
equal to 1.
Thus

f ≪ F in U ⇒ f ′ ≪ F ′ in Ur0 ,

where r0 is the unique root in the interval (0, 1) of the equation

m = m(r,F) = 2r
1− r2 .

Example 2. If F ∈ F , where F = S or F = ST , then (see f.e. [5])

1− r
1 + r

¬
∣∣∣∣zF ′(z)F (z)

∣∣∣∣ ¬ 1 + r1− r , |z| = r.

Thus
m(r,S) = m(r,ST ) = 1− r

1 + r

and r0 ∈ (0, 1) is the solution of the equation

1− r
1 + r

=
2r
1− r2 ⇔ r2 − 4r + 1 = 0.

Hence we get the result of Z. Lewandowski [10]

r0(H,ST ) = r0(H,S) = 2−
√
3.

Example 3. If F ∈ CV, then

1
1 + r

¬
∣∣∣∣zF ′(z)F (z)

∣∣∣∣ ¬ 1
1− r , |z| = r.

Thus
m(r, CV) = 1

1 + r
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and r0 ∈ (0, 1) is the solution of the equation

1
1 + r

=
2r
1− r2 .

Hence we get the result of T.H. MacGregor [13]

r0(H, CV) =
1
3
.

3. Starlike and convex majorants

Let ϕ be a holomorphic univalent function which satisfies the conditions:
Reϕ(z) > 0 for z ∈ U , ϕ(U) is symmetric with respect to the real axis and
starlike with respect to ϕ(0) = 1, and ϕ′(0) > 0.
By CV(ϕ) we denote the subclass of convex functions defined by

1 +
zf ′′(z)
f ′(z)

≺ ϕ(z) in U

and by ST (ϕ) we denote the subclass of starlike functions defined by

zf ′(z)
f(z)

≺ ϕ(z) in U.

These classes were introduced and investigated by W. Ma and D. Minda
in [11]. When ϕ varies, CV(ϕ) and ST (ϕ) generate a number of known
subclasses of convex and starlike functions, respectively.
In particular

CV = CV(ϕ0), ST = ST (ϕ0), where ϕ0(z) =
1 + z
1− z , z ∈ U.

When

ϕ1(z) =
1 + (1− 2α)z
1− z , 0 ¬ α < 1,

then
ϕ1(U) = {w = u+ iv : Rew > α}

and the classes CV(ϕ1) and ST (ϕ1) coincide with the classes CV(α) and
ST (α) consisting of all functions that are convex of order α and starlike of
order α, respectively.
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For

ϕ2(z) =
(
1 + z
1− z

)α
, 0 < α ¬ 1,

we have
ϕ2(U) = {w = u+ iv : | arg w| < απ/2}

and CV(ϕ2) and ST (ϕ2) consist of strongly convex functions of order α and
of strongly starlike functions of order α, respectively.
If UCV denote the class of uniformly convex functions introduced by

A.W. Goodman in [6], then (see [12], [15])

UCV = CV(ϕ3), where ϕ3(z) = 1 +
2
π2

(
log
1 +
√
z

1−√z

)2
, z ∈ U.

Let’s get back to the problem of majorization of derivatives. If the ma-
jorant belongs to Ma-Minda class of starlike functions then as an immediate
consequence of Theorem 1 we obtain

Corollary 4. Let F ∈ ST (ϕ) and let f ∈ H and f(z) = a1z + a2z2 +
. . . , a1 ̸= 0. If f ≪ F in U , then f ′ ≪ F ′ in the disk Ur0, where r0 is the
unique root in the interval (0, 1) of the equation

min
|z|=r
|ϕ(z)| = 2r

1− r2 .

If additionally ϕ(U) is convex, then min|z|=r |ϕ(z)| = ϕ(−r) and so r0 is the
unique root in the interval (0, 1) of the equation

ϕ(−r) = 2r
1− r2 .

Remark 5. The results of Corollary 4 were recently proved in [4] (see
Theorem 2 and Remark 1).

Example 6. If F ∈ ST (α), then

zF ′(z)
F (z)

≺ ϕ1(z) =
1 + (1− 2α)z
1− z in U.

Thus

m(r,ST (α)) = ϕ1(−r) =
1− (1− 2α)r
1 + r
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and r0 ∈ (0, 1) is a solution of the equation

1− (1− 2α)r
1 + r

=
2r
1− r2 .

Hence

r0(H,ST (α)) =
2− α−

√
3− 2α+ α2
1− 2α for α ̸= 1

2

and
r0(H,ST (1/2)) =

1
3
.

Example 7. If F ∈ ST α, where ST α denotes the class of strongly starlike
functions of order α, then

zF ′(z)
F (z)

≺ ϕ2(z) =
(
1 + z
1− z

)α
in U.

Thus

m(r,ST α) = ϕ2(−r) =
(
1− r
1 + r

)α
and r0 ∈ (0, 1) is a solution of the equation(

1− r
1 + r

)α
=
2r
1− r2 .

Example 8. Let Sp denote the subclass of starlike functions corresponding
to UCV, introduced and investigated by F. Rønning in [15], defined by the
relation

f ∈ UCV ⇔ zf ′(z) ∈ Sp.
If F ∈ Sp, then

zF ′(z)
F (z)

≺ ϕ3(z) = 1 +
2
π2

(
log
1 +
√
z

1−√z

)2
in U.

Since

ϕ3(U) = {w = u+ iv : v2 < 2u− 1} = {w : Rew > |w − 1|}
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we get

m(r,Sp) = ϕ3(−r) = 1 +
2
π2

(
log
1 +
√−r

1−√−r

)2
= 1− 2

π2

(
arccos

1− r
1 + r

)2
and r0 ∈ (0, 1) is a solution of the equation

1− 2
π2

(
arccos

1− r
1 + r

)2
=
2r
1− r2 .

It is more difficult to determine the radius of majorization of derivatives
if majorant belongs to the class CV(ϕ). We will find it explicitely on the
assumption of the convexity of region ϕ(U).
Define kϕ by the conditions kϕ(0) = k′ϕ(0)− 1 = 0 and

1 +
zk′′ϕ(z)

k′ϕ(z)
= ϕ(z), z ∈ U.

It is clear that kϕ belongs to CV (ϕ) and

log k′ϕ(z) =
∫ z
0

ϕ(t)− 1
t

dt.

From the assumption that ϕ(U) is symmetric with respect to the real axis
it follows that ϕ has real coefficients. Thus the same is true for functions

k′ϕ(z) = exp
{∫ z
0

ϕ(t)− 1
t

dt

}
and

kϕ(z) =
∫ z
0
k′ϕ(t)dt.

We need the following lemma [14]

Lemma 9. Let h be analytic in U , h(0) = 1 and let function q with q(0) = 1
satisfy the differential equation

q(z) +
zq′(z)
q(z)

= h(z), z ∈ U.

If we suppose that h is convex in U and Re q(z) > 0, z ∈ U , then q is
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univalent and is given by

q(z) =
zk′(z)
k(z)

, k(z) =
∫ z
0

g(t)
t
dt and g(z) = z exp

(∫ z
0

h(t)− 1
t

dt

)
.

Moreover, if f is analytic in U , f(0) = 0 and 1+ zf ′′(z)/f ′(z) ≺ h(z) in U ,
then zf ′(z)/f(z) ≺ q(z) in U . The result is sharp and the extremal function
is f = k.

Theorem 10. Let F ∈ CV(ϕ) and let f ∈ H and f(z) = a1z + a2z2 + . . . ,
a1 ̸= 0. Assume additionally that ϕ(U) is convex. If f ≪ F in U , then
f ′ ≪ F ′ in the disk Ur0, where r0 is the unique root in the interval (0, 1) of
the equation

−rk′ϕ(−r)
kϕ(−r)

=
2r
1− r2 .

Proof. Let F ∈ CV(ϕ) and q(z) = zk′ϕ(z)/kϕ(z). Then

q(z) +
zq′(z)
q(z)

= ϕ(z), z ∈ U.

Moreover ϕ is convex in U and since kϕ ∈ CV(ϕ) ⊂ ST we have Re q(z) > 0,
z ∈ U . Thus the conditions of Lemma 9 are satisfied, so we get

zF ′(z)
F (z)

≺ q(z) = zk′ϕ(z)

kϕ(z)
in U.

Thus

min
|z|=r

∣∣∣∣zF ′(z)F (z)

∣∣∣∣ = min|z|=r
∣∣∣∣∣zk′ϕ(z)kϕ(z)

∣∣∣∣∣ = min|z|=r |q(z)|.
Hence by Theorem 1 if f ∈ H and f ≪ F in U , then f ′ ≪ F ′ in the disk
Ur0 , where r0 is the unique root in the interval (0, 1) of the equation

min
|z|=r

∣∣∣∣∣zk′ϕ(z)kϕ(z)

∣∣∣∣∣ = 2r
1− r2 .

Now we determine min|z|=r |q(z)|. Let z = reiθ. It suffices to consider a case
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θ ∈ [0, π], because of q(z̄) = q(z). Hence we have

min
|z|=r
|q(z)| = min

θ∈[0,π]
|q(reiθ)| = min

θ∈[0,π]

∣∣∣∣∣reiθk′ϕ(reiθ)kϕ(reiθ)

∣∣∣∣∣ = minθ∈[0,π]

∣∣∣∣∣∣ re
iθk′ϕ(re

iθ)∫ reiθ
0 k′ϕ(t)dt

∣∣∣∣∣∣
= min
θ∈[0,π]

∣∣∣∣∣ reiθk′ϕ(re
iθ)∫ r

0 k
′
ϕ(xeiθ)eiθdx

∣∣∣∣∣ = minθ∈[0,π]

r∣∣∣∣∫ r0 k′ϕ(xeiθ)dxk′ϕ(reiθ)

∣∣∣∣ , (6)

where

k′ϕ(z) = exp
{∫ z
0

ϕ(t)− 1
t

dt

}
.

We show that

min
θ∈[0,π]

r∣∣∣∣∫ r0 k′ϕ(xeiθ)dxk′ϕ(reiθ)

∣∣∣∣ =
−rk′ϕ(−r)
kϕ(−r)

. (7)

In order to get (7) we prove that

max
θ∈[0,π]

∣∣∣∣∣
∫ r
0

k′ϕ(xe
iθ)

k′ϕ(reiθ)
dx

∣∣∣∣∣ =
∫ r
0

k′ϕ(−x)
k′ϕ(−r)

dx =
−kϕ(−r)
k′ϕ(−r)

. (8)

In view of the inequality∣∣∣∣∣
∫ r
0

k′ϕ(xe
iθ)

k′ϕ(reiθ)
dx

∣∣∣∣∣ ¬
∫ r
0

∣∣∣∣∣k′ϕ(xeiθ)k′ϕ(reiθ)

∣∣∣∣∣ dx
it suffices to show that ∣∣∣∣∣k′ϕ(xeiθ)k′ϕ(reiθ)

∣∣∣∣∣ ¬ k′ϕ(−x)
k′ϕ(−r)

(9)

for θ ∈ [0, π] and x ∈ [0, r]. We have∣∣∣∣∣k′ϕ(xeiθ)k′ϕ(reiθ)

∣∣∣∣∣ = exp[Re log k′ϕ(xeiθ)]exp[Re log k′ϕ(reiθ)]
= exp[Re log k′ϕ(xe

iθ)− Re log k′ϕ(reiθ)]

and in order to get (9) we must prove that

Re log k′ϕ(xe
iθ)− Re log k′ϕ(reiθ) ¬ log k′ϕ(−x)− log k′ϕ(−r) (10)
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for θ ∈ [0, π] and x ∈ [0, r]. Let

G(θ) = Re log k′ϕ(xe
iθ)− Re log k′ϕ(reiθ), θ ∈ [0, π].

Then

G′(θ) = Re
ixeiθk′′ϕ(xe

iθ)

k′ϕ(xeiθ)
− Re ire

iθk′′ϕ(re
iθ)

k′ϕ(reiθ)

= Re[i(ϕ(xeiθ)− 1)]− Re[i(ϕ(reiθ)− 1)]
= −Im(ϕ(xeiθ)− 1) + Im(ϕ(reiθ)− 1)
= Imϕ(reiθ)− Imϕ(xeiθ).

If θ = 0 or θ = π then Imϕ(reiθ) = Imϕ(xeiθ) = 0 and so G′(θ) = 0.
We show that Imϕ(reiθ) > Imϕ(xeiθ) for fixed θ ∈ (0, π) which implies

G′(θ) > 0 for θ ∈ (0, π). Therefore G(θ) ¬ G(π) for θ ∈ [0, π] which is
equivalent to (10).
For fixed θ ∈ (0, π) let H(x) = Imϕ(xeiθ) and 0 ¬ x ¬ r < 1. We have

H(0) = Imϕ(0) = 0 and H(r) = Imϕ(reiθ) > 0.

Moreover

H ′(x) = Im[ϕ′(xeiθ)eiθ] =
1
x
Im
(
−i d

dθ
ϕ(xeiθ)

)
= −1

x
Re

d

dθ
ϕ(xeiθ).

As we noted before the function ϕ has real coefficients which implies that it
maps (−r, r) one-to-one into the real axis. The assumption ϕ′(0) > 0 implies
that ϕ is increasing on (−r, r). Thus ϕ(−x) < ϕ(0) = 1 < ϕ(x). From the
convexity of the function ϕ it follows that ϕ(|z| = x) is a convex curve and
so Reϕ(xeiθ) is a decreasing function of the variable θ for θ ∈ [0, π]. Hence

H ′(x) = −1
x

d

dθ
Reϕ(xeiθ) > 0

which means that (10) and thereby (9), (8), (7) hold true.

Example 11. If F ∈ CV(α), then

1 +
zF ′′(z)
F ′(z)

≺ ϕ1(z) =
1 + (1− 2α)z
1− z in U.
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Thus

m(r, CV(α)) = −rk
′
ϕ1(−r)

kϕ1(−r)
and r0 ∈ (0, 1) is the solution of the equation

−rk′ϕ1(−r)
kϕ1(−r)

=
2r
1− r2 , (11)

where

k′ϕ1(z) = exp
{∫ z
0

ϕ1(t)− 1
t

dt

}
= exp

{∫ z
0

2(1− α)
1− t dt

}
, 0 ¬ α < 1.

Thus

k′ϕ1(z) =
1

(1− z)2(1−α) and kϕ1(z) =
∫ z
0

1
(1− t)2(1−α)dt.

Hence
kϕ1(z) =

1
1− 2α

[
1

(1− z)1−2α − 1
]
for α ̸= 1/2

and
kϕ1(z) =

∫ z
0

1
1− tdt = log

1
1− z for α = 1/2.

Therefore from (11) we have that if f ≪ F in U and F ∈ CV(α), α ∈ [0, 1),
then f ′ ≪ F ′ in the disk Ur0 , where r0 ∈ (0, 1) is the solution of the equation

(1− 2α)r + 2(1 + r)1−2α = 3− 2α for α ̸= 1/2,

and
(1 + r)2 = e1−r for α = 1/2.

Note that for α = 0 we get

r0(H, CV) =
1
3
.

Example 12. Let F ∈ UCV = CV(ϕ3). Then

1 +
zF ′′(z)
F ′(z)

≺ ϕ3(z) = 1 +
2
π2

(
log
1 +
√
z

1−√z

)2
in U.
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In view of Theorem 10

m(r,UCV) = −rk
′
ϕ3(−r)

kϕ3(−r)

and r0 ∈ (0, 1) is the solution of the equation

−rk′ϕ3(−r)
kϕ3(−r)

=
2r
1− r2 ,

where

k′ϕ3(z) = exp
{∫ z
0

ϕ3(t)− 1
t

dt

}
= exp

 2π2
∫ z
0

(
log 1+

√
t

1−
√
t

)2
t

dt

 .
Example 13. Let F be in the class of k-uniformly convex functions k-UCV,
k ­ 0, introduced by S. Kanas and A. Wiśniowska [9]. A function f ∈ S
is k-uniformly convex in U , if the image of every circular arc γ ⊂ U with
center ζ, where |ζ| ¬ k, is convex. Note that 0-UCV = CV and for k = 1 we
get Goodman’s definition of the class UCV so 1-UCV = UCV. It was shown
in [9] that

f ∈ k-UCV ⇔ Re
{
1 +

zf ′′(z)
f ′(z)

}
­ k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ for z ∈ U, |ζ| ¬ k.

For k ∈ (0, 1) we get [9]

f ∈ k-UCV ⇔ 1 + zf ′′(z)
f ′(z)

≺ ϕ4(z) in U,

where

ϕ4(z) =
1
1− k2 cosh

{(
2
π
arccos k

)
log
1 +
√
z

1−√z

}
− k2

1− k2 , z ∈ U.

Hence if F ∈ k-UCV with k ∈ (0, 1) then

m(r, k-UCV) = −rk
′
ϕ4(−r)

kϕ4(−r)
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and r0 ∈ (0, 1) is the solution of the equation

−rk′ϕ4(−r)
kϕ4(−r)

=
2r
1− r2 , (12)

where

k′ϕ4(z) = exp
{∫ z
0

ϕ4(t)− 1
t

dt

}

= exp

 2
1− k2

∫ z
0

sinh2
{(
arccos k
π

)
log 1+

√
t

1−
√
t

}
t

dt

 .
It is very difficult to solve explicitly the differential equation (12) for ar-

bitrary k ∈ (0, 1), except the case k =
√
2/2. For k =

√
2/2 the computation

is easy and after some calculations we get

ϕ4(z) = 2 cosh

{
1
2
log
1 +
√
z

1−√z

}
− 1 = 2√

1− z − 1,

k′ϕ4(z) = exp

2
∫ z
0

1√
1−t − 1
t

dt

 = 16
(1 +
√
1− z)4 ,

hence

kϕ4(z) =
16
3
1 + 3
√
1− z

(1 +
√
1− z)3 −

8
3
,

and
zk′ϕ4(z)

kϕ4(z)
=

6
(1− z) + 4

√
1− z + 1 .

Therefore from (12) we have that if f ≪ F in U and F ∈ (
√
2/2)-UCV, then

f ′ ≪ F ′ in the disk Ur0 , where r0 ∈ (0, 1) is the solution of the equation

3
2 + r + 4

√
1 + r

=
r

1− r2 .
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Summary

We prove a general result which allows us to find the radius of majorization
of derivatives if majorant belongs to any subclass of the class S. The aim
of this paper is to determinate the radius of majorization of derivatives for
majorants from Ma-Minda classes of convex functions.

Streszczenie

Dowodzimy ogólny rezultat pozwalaja̧cy znaleźć promień majoryzacji
pochodnych, gdy majoranta należy do dowolnej podklasy klasy S. Celem
pracy jest wyznaczenie promienia majoryzacji pochodnych dla majorant
z klasy funkcji wypukłych typu Ma-Minda.
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